Tag Archives: PowerMock

Why is wide usage of PowerMock problematic

There are Java constructs well known for their testability issues:

  • Private methods
  • Static methods
  • Constuctors
  • Final methods or classes

Skilled Java developer following TDD tries to minimize their testability impacts. Don’t want to dive into techniques to enhance testability. They are explained well on Misko Hevery’s blog.

Some developers argue that we have frameworks today (like PowerMock or JMockIt) that are able mock these testability killers. And it’s true. So should we throw factory methods to bin and start using static or singleton classes widely? The answer is NO. Reason is in Java language nature. There isn’t way how to mock mentioned constructs using Java features like inheritance, polymorphism or reflection. Byte-code manipulation is needed. And that is the problem.

Here are some facts about PowerMock:

  • It is using Javassist library for byte-code manipulation
  • It took 1.5 years to make PowerMock + Javaassist compatible with Java7 since its introduction. Here is note from PowerMock change log:
Change log 1.5 (2012-12-04)
---------------------------
Upgraded to Javassist 3.17.1-GA, this means that PowerMock works in Java 7!

I tried to use PowerMock and JMockIt to test some legacy code. The result weren’t acceptable for me. Sometimes there were some strange crashes or clash with JaCoCo test coverage tool (have to say that I didn’t give JMockIt deep chance and abandoned on it immediately after first problems). At the end I always decided to change the production code to enhance testability and use plain Mockito.

If it would be up to me I would exclude byte-code manipulation testing frameworks from technology stack completely. Java8 is coming soon and potential migration of unit tests can be a big problem if it is used widely. It would be ridiculous to wait 1.5 years for Java8 update because of testing framework.

I respect PowerMock and JMockIt projects and people behind them. They are sometimes valuable in cases when you have to deal with legacy code or third party libraries.

Mock final class

Foreword

If you already read some other blog post about unusual mocking, you can skip prelude via this link.

I was asked to put together examples how to mock Java constructs well know for their testability issues:

I am calling these techniques unusual mocking. I was worried that such examples without any guidance can be widely used by teammates not deeply experienced in mocking frameworks.

Developers practicing TDD or BDD should be aware of testability problems behind these constructs and try to avoid them when designing their tests and modules. That is the reason why you probably wouldn’t be facing such unusual mocking often on project using these great programming methodologies.

But sometimes you have to extend or maintain legacy codebase that usually contains low cohesive classes. In most cases there isn’t time in current hectic agile world to make such class easy to unit test standard way. When you are trying to unit test such class you often realize that unusual mocking is needed.

That is why I decided to create and share refactoring considerations alongside with examples and workarounds for unusual mocking. Examples are using Mockito and PowerMock mocking frameworks and TestNG unit testing framework.

Mock final class

Refactoring considerations

Change class to non-final (remove final keyword) and test it standard way. This is technique I use always when I can change code of final class.

Usage of PowerMock

Before usage of this example, please carefully consider if it is worth to bring bytecode  manipulation risks into your project. They are gathered in this blog post. In my opinion it should be used only in very rare and non-avoidable cases.

Test shows how to mock final class by PowerMock framework. Example covers:

  1. Mocking of method with return value in final class
  2. Mocking of final void method in final class
  3. Verifying of method calls in final class

Final class:

public final class Plane {
	public static final int ENGINE_ID_RIGHT = 2;
	public static final int ENGINE_ID_LEFT = 1;

	public boolean verifyAllSystems() {
		throw new UnsupportedOperationException("Fail if not mocked!");
	}

	public void startEngine(int engineId) {
		throw new UnsupportedOperationException(
				"Fail if not mocked! [engineId=" + engineId + "]");
	}
}

Class under test:

public class Pilot {
	private Plane plane;

	public Pilot(Plane plane) {
		this.plane = plane;
	}

	public boolean readyForFlight() {
		plane.startEngine(Plane.ENGINE_ID_LEFT);
		plane.startEngine(Plane.ENGINE_ID_RIGHT);
		return plane.verifyAllSystems();
	}
}

Test:

@PrepareForTest(Plane.class)
public class PilotTest extends PowerMockTestCase {
	@Test
	public void testReadyForFlight() {
		Plane planeMock = PowerMockito.mock(Plane.class);
		Pilot pilot = new Pilot(planeMock);

		Mockito.when(planeMock.verifyAllSystems()).thenReturn(true);

		// testing method
		boolean actualStatus = pilot.readyForFlight();

		Assert.assertEquals(actualStatus, true);
		Mockito.verify(planeMock).startEngine(Plane.ENGINE_ID_LEFT);
		Mockito.verify(planeMock).startEngine(Plane.ENGINE_ID_RIGHT);
	}
}

Links

Source code can be downloaded from Github.

Other unusual mocking examples:

Mock static method

Foreword

If you already read some other blog post about unusual mocking, you can skip prelude via this link.

I was asked to put together examples how to mock Java constructs well know for their testability issues:

I am calling these techniques unusual mocking. I was worried that such examples without any guidance can be widely used by teammates not deeply experienced in mocking frameworks.

Developers practicing TDD or BDD should be aware of testability problems behind these constructs and try to avoid them when designing their tests and modules. That is the reason why you probably wouldn’t be facing such unusual mocking often on project using these great programming methodologies.

But sometimes you have to extend or maintain legacy codebase that usually contains low cohesive classes. In most cases there isn’t time in current hectic agile world to make such class easy to unit test standard way. When you are trying to unit test such class you often realize that unusual mocking is needed.

That is why I decided to create and share refactoring considerations alongside with examples and workarounds for unusual mocking. Examples are using Mockito and PowerMock mocking frameworks and TestNG unit testing framework.

Mock static method

Refactoring considerations

  1. No mocking – In theory, static methods should be used only in small utility classes. Their functionality should be simple enough. So there shouldn’t be need to  mock static method.
  2. Converting into Spring/EJB bean – If the functionality in static method isn’t simple enough and mocking is needed, consider converting class into Spring/EJB singleton bean. Such bean can be injected into testing class. This is easily mockable by plain Mockito functionality (see this blog post).

Workaround using Mockito

This is my preferred technique when I need to mock static method. I believe that minor exposing of internal implementation in flavor to enhance testability of testing module is much lower risk for project than fall into bytecode manipulation mocking  framework like PowerMock or JMockIt.

This technique involves:

  • Encapsulation of static methods into default method
  • Partial mock (spy) is used to mock this method during testing

Mockito example covers:

  1. Mocking of encapsulated method with return value
  2. Mocking of encapsulated void method
  3. Verifying of encapsulated method calls

Class under test:

public class HumanityMockito {
	/**
	 * Is used as testing target to demostrate static mocking workaround
	 * 
	 * @param greenHouseGasesList
	 *            list of greenhouse gases amounts to release into atmosphere
	 * @return greenhouse gases levels in atmosphere
	 */
	public double revageAthmoshere(Collection<Integer> greenHouseGasesList) {
		for (int greenhouseGases : greenHouseGasesList) {
			releaseGreenHouseGases(greenhouseGases);
		}
		return monitorRevageOfAthmosphere();
	}

	/**
	 * Void method with default access modifier to be mocked. Wraps static
	 * method call.
	 * 
	 * @param volume
	 *            volume of greenhouse gases to release
	 */
	void releaseGreenHouseGases(int volume) {
		Athmosphere.releaseGreenhouseGases(volume);
	}

	/**
	 * Method with return value and default access modifier to be mocked. Wraps
	 * static method call.
	 * 
	 * @return greenhouse gases level
	 */
	double monitorRevageOfAthmosphere() {
		return Athmosphere.getGreenhouseGassesLevel();
	}
}

Test:

public class HumanityMockitoTest {
	private static final int BILION_TONS_CO2 = 5;
	private static final double GREENGOUSE_GASSES_LEVEL = 393.1;

	@Test
	public void testRevageAthmoshere() {
		HumanityMockito humanity = new HumanityMockito();
		HumanityMockito humanitySpy = Mockito.spy(humanity);

		Mockito.doReturn(GREENGOUSE_GASSES_LEVEL).when(humanitySpy)
				.monitorRevageOfAthmosphere();
		Mockito.doNothing().when(humanitySpy)
				.releaseGreenHouseGases(BILION_TONS_CO2);

		// invoke testing method
		Collection<Integer> greenHouseGassesList = new ArrayList<>(
				Arrays.asList(BILION_TONS_CO2, BILION_TONS_CO2));
		double actualLevel = humanitySpy.revageAthmoshere(greenHouseGassesList);

		Assert.assertEquals(actualLevel, GREENGOUSE_GASSES_LEVEL);
		Mockito.verify(humanitySpy, Mockito.times(greenHouseGassesList.size()))
				.releaseGreenHouseGases(BILION_TONS_CO2);
	}
}

Usage of PowerMock

Before usage of this example, please carefully consider if it is worth to bring bytecode  manipulation risks into your project. They are gathered in this blog post. In my opinion it should be used only in very rare and non-avoidable cases.

Test shows how to mock static method by PowerMock directly. Example covers:

  1. Mocking of static method with return value
  2. Mocking of static void method
  3. Verifying of static method calls

Class under test:

public class HumanityPowerMock {
	public double revageAthmoshere(Collection<Integer> greenHouseGasesList) {
		for (int greenhouseGases : greenHouseGasesList) {
			Athmosphere.releaseGreenhouseGases(greenhouseGases);
		}
		return Athmosphere.getGreenhouseGassesLevel();
	}
}

Test:

@PrepareForTest(Athmosphere.class)
public class HumanityPowerMockTest extends PowerMockTestCase {
	private static final int BILION_TONS_CO2 = 5;
	private static final double GREENGOUSE_GASSES_LEVEL = 393.1;

	@Test
	public void testRevageAthmoshere() {
		PowerMockito.mockStatic(Athmosphere.class);

		Mockito.when(Athmosphere.getGreenhouseGassesLevel()).thenReturn(
				GREENGOUSE_GASSES_LEVEL);

		// call of static method is required to mock it
		PowerMockito.doNothing().when(Athmosphere.class);
		Athmosphere.releaseGreenhouseGases(BILION_TONS_CO2);

		// invoke testing method
		Collection<Integer> greenHouseGassesList = new ArrayList<>(
				Arrays.asList(BILION_TONS_CO2, BILION_TONS_CO2));
		HumanityPowerMock humanity = new HumanityPowerMock();
		double actualLevel = humanity.revageAthmoshere(greenHouseGassesList);

		Assert.assertEquals(actualLevel, GREENGOUSE_GASSES_LEVEL);

		// call of static method is required to verify it
		PowerMockito.verifyStatic(Mockito.times(greenHouseGassesList.size()));
		Athmosphere.releaseGreenhouseGases(BILION_TONS_CO2);
	}
}

Links

Source code can be downloaded from Github.

Other unusual mocking examples:

Mock final method

Foreword

If you already read some other blog post about unusual mocking, you can skip prelude via this link.

I was asked to put together examples how to mock Java constructs well know for their testability issues:

I am calling these techniques unusual mocking. I was worried that such examples without any guidance can be widely used by teammates not deeply experienced in mocking frameworks.

Developers practicing TDD or BDD should be aware of testability problems behind these constructs and try to avoid them when designing their tests and modules. That is the reason why you probably wouldn’t be facing such unusual mocking often on project using these great programming methodologies.

But sometimes you have to extend or maintain legacy codebase that usually contains low cohesive classes. In most cases there isn’t time in current hectic agile world to make such class easy to unit test standard way. When you are trying to unit test such class you often realize that unusual mocking is needed.

That is why I decided to create and share refactoring considerations alongside with examples and workarounds for unusual mocking. Examples are using Mockito and PowerMock mocking frameworks and TestNG unit testing framework.

Mock final method

Refactoring considerations

Change method to non-final (remove final keyword) and test it standard way. This is technique I use always when I can change code of final method.

Usage of PowerMock

Before usage of this example, please carefully consider if it is worth to bring bytecode  manipulation risks into your project. They are gathered in this blog post. In my opinion it should be used only in very rare and non-avoidable cases.

Test shows how to mock final method by PowerMock framework. Example covers:

  1. Mocking of final method with return value
  2. Mocking of final void method
  3. Verifying of final method calls

Class with final methods:

public class Bike {
	public final void shiftGear(boolean easier) {
		throw new UnsupportedOperationException("Fail if not mocked! [easier="
				+ easier + "]");
	}

	public final int getGear() {
		throw new UnsupportedOperationException("Fail if not mocked!");
	}
}

Class under test:

public class Rider {
	private Bike bike;

	public Rider(Bike bike) {
		this.bike = bike;
	}

	public int prepareForUphill() {
		int gear = bike.getGear();
		for (int idx = 0; idx < 2; idx++) {
			bike.shiftGear(true);
			gear++;
		}
		return gear;
	}
}

Test:

@PrepareForTest(Bike.class)
public class RiderTest extends PowerMockTestCase {
	private static final int TESTING_INITIAL_GEAR = 2;

	@Test
	public void testShiftGear() {
		Bike mock = PowerMockito.mock(Bike.class);

		Rider rider = new Rider(mock);
		Mockito.when(mock.getGear()).thenReturn(TESTING_INITIAL_GEAR);

		// invoke testing method
		int actualGear = rider.prepareForUphill();

		Assert.assertEquals(actualGear, TESTING_INITIAL_GEAR + 2);
		Mockito.verify(mock, Mockito.times(2)).shiftGear(true);
	}
}

Links

Source code can be downloaded from Github.

Other unusual mocking examples:

Mock constructor

Foreword

If you already read some other blog post about unusual mocking, you can skip prelude via this link.

I was asked to put together examples how to mock Java constructs well know for their testability issues:

I am calling these techniques unusual mocking. I was worried that such examples without any guidance can be widely used by teammates not deeply experienced in mocking frameworks.

Developers practicing TDD or BDD should be aware of testability problems behind these constructs and try to avoid them when designing their tests and modules. That is the reason why you probably wouldn’t be facing such unusual mocking often on project using these great programming methodologies.

But sometimes you have to extend or maintain legacy codebase that usually contains low cohesive classes. In most cases there isn’t time in current hectic agile world to make such class easy to unit test standard way. When you are trying to unit test such class you often realize that unusual mocking is needed.

That is why I decided to create and share refactoring considerations alongside with examples and workarounds for unusual mocking. Examples are using Mockito and PowerMock mocking frameworks and TestNG unit testing framework.

Mock constructor

Refactoring considerations

  • If your testing method creates instance/s of some type, there are two possibilities what can happen with these instances
    • Created instance/s are returned from testing method. They are in this case part of the testing method API. This can be tested by verifying against created instances rather than constructor method call. If target instances doesn’t have hashCode/equals contract implemented, you can still create test specific comparator to verify created data.
    • Created instances are used as parameter/s passed to some dependency object. This dependency object of testing class is most probably mocked. In this case it’s better idea to capture arguments of dependency method call and verify them. Mockito offers good support for this.
    • Created instances are temporary objects that support testing method job. In this case you shouldn’t care about creation of these instances, because you should treat testing module as black box that doing the job, but you don’t know how.
  • Create factory class for constructing instances and mock it standard way.
  • If that fits to requirement -> Abstract factory design pattern

Workaround using Mockito

This is my preferred technique when I need to mock constructor. I believe that minor exposing of internal implementation in flavor to enhance testability of testing module is much lower risk for project than fall into bytecode manipulation mocking  framework like PowerMock or JMockIt.

This technique involves:

  • Encapsulating the constructor into method with default access modifier
  • Partial mock (spy) is used to mock this method during testing

Mockito example covers:

  1. Partial mocking of factory method
  2. Verifying of mocked factory method call

Class under test:

public class CarFactoryMockito {
	Car carFactoryMethod(String type, String color) {
		return new Car(type, color);
	}

	public Car constructCar(String type, String color) {
		carFactoryMethod(type, color);
		// ... other logic needed to be tested ...
		return carFactoryMethod(type, color);
	}
}

Test:

public class CarFactoryMockitoTest {
	private static final String TESTING_TYPE = "Tatra";
	private static final String TESTING_COLOR = "Black";

	@Test
	public void testConstructCar() {
		CarFactoryMockito carFactory = new CarFactoryMockito();
		CarFactoryMockito carFactorySpy = Mockito.spy(carFactory);

		Car mockedInstance = Mockito.mock(Car.class);
		Mockito.doReturn(mockedInstance).when(carFactorySpy)
				.carFactoryMethod(TESTING_TYPE, TESTING_COLOR);

		// invoke testing method
		Car actualInstance = carFactorySpy.constructCar(TESTING_TYPE,
				TESTING_COLOR);

		Assert.assertEquals(actualInstance, mockedInstance);
		// ... verify other logic in constructCar() method ...
		Mockito.verify(carFactorySpy, Mockito.times(2)).carFactoryMethod(
				TESTING_TYPE, TESTING_COLOR);
	}
}

Usage of PowerMock

Before usage of this example, please carefully consider if it is worth to bring bytecode  manipulation risks into your project. They are gathered in this blog post. In my opinion it should be used only in very rare and non-avoidable cases.

Test shows how to mock constructor directly by PowerMock. Example covers:

  1. Mocking of constructor
  2. Verifying of constructor call

Class under test:

public class CarFactoryPowerMock {
	public Car constructCar(String type, String color) {
		new Car(type, color);
		return new Car(type, color);
	}
}

Test:

/**
 * Demonstrates constructor mocking by PowerMock.
 * <p>
 * NOTE: Prepared in PowerMock annotation {@link PrepareForTest} should be class
 * where is constructor called
 */
@PrepareForTest(CarFactoryPowerMock.class)
public class CarFactoryPowerMockTest extends PowerMockTestCase {
	private static final String TESTING_TYPE = "Tatra";
	private static final String TESTING_COLOR = "Black";

	@Test
	public void testConstructCar() throws Exception {
		Car expectedCar = Mockito.mock(Car.class);
		PowerMockito.whenNew(Car.class)
				.withArguments(TESTING_TYPE, TESTING_COLOR)
				.thenReturn(expectedCar);

		// invoke testing method
		CarFactoryPowerMock carFactory = new CarFactoryPowerMock();
		Car actualCar = carFactory.constructCar(TESTING_TYPE, TESTING_COLOR);

		Assert.assertEquals(actualCar, expectedCar);
		// ... verify other logic in constructCar() method ...
		PowerMockito.verifyNew(Car.class, Mockito.times(2)).withArguments(
				TESTING_TYPE, TESTING_COLOR);
	}
}

Links

Source code can be downloaded from Github.

Other unusual mocking examples: