Enterprise Integration with Spring
Study Notes

These study notes were created by Lubos Krnac and are based on various Spring reference documentations.

Spring Framework Reference Documentation 3.2.4.RELEASE copyright notice:

Rod Johnson, Juergen Hoeller, Keith Donald, Colin Sampaleanu, Rob Harrop, Thomas Risberg Alef Arendsen, Darren Davison, Dmitriy Kopylenko, Mark
Pollack, Thierry Templier, Erwin Vervaet, Portia Tung, Ben Hale, Adrian Colyer, John Lewis, Costin Leau, Mark Fisher, Sam Brannen, Ramnivas Laddad,
Arjen Poutsma, Chris Beams, Tareq Abedrabbo, Andy Clement, Dave Syer, Oliver Gierke, Rossen Stoyanchev, Phillip Webb Copyright © 2004-2013
Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further
provided that each copy contains this Copyright Notice, whether distributed in print or electronicall

Spring Batch — Reference Documentation 2.2.2.RELEASE copyright notice:

Copyright © 2005-2013 Lucas Ward, Dave Syer, Thomas Risberg, Robert Kasanicky, Dan Garrette, Wayne Lund, Michael Minella, Chris Schaefer
Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further
provided that each copy contains this Copyright Notice, whether distributed in print or electronically.

Table of Contents

1 Tasks and SCREAUIING.........cccouiiiiiiieiieee ettt e et e e et e e e teeesabe e e e e esnsnsaeeeeesnnssaaaens 4
1.1 Spring frameWork PrOVIAES........cccuiiriieriieiieiieeiie ettt et eee et e saeeteesibeeeetbaeesabeeeennsaeenns 4
1.2 TasKEXECULOT aDSIIACTION.ccviieeiieeeiieeeiee et e et e et e et e e et e e eteeesveeesabeeessseeessseeeesnsnseeaeennnes 4
1.3 TaskScheduler abStraction..........c..eiviiieriiiieiieeee ettt 4
1.4 Tri@EET INTETTACE. ... vieeeiiieeciiieeeieeeetee ettt e et e e et e e et e e e be e e s abeeesaseeessbeeesseeesseeesseeensseesnsseaeens 5
1.5 ANNOLALION SUPPOTL....ciuiiiiiiiiieiieeieertte ettt ettt e et erteeeteesteeebeessaesbeessaeesseenseesnsaennsseeennseeens 5
1.6 TaSK NAIMESPACE. ...c.uveeeeiiiieeitieeiieeesieeeeiteeeetteeeeteestaeessaeeessaeesssaeesssaeesssaeessseeessseeanssaesssseeansseenns 6
1.7 APPIICALION SETVETS......iiiuiietieeiieeiieeieeieeeteetteeteeteeeibe e teeesseeseessseenseeesseenseesnseesaeasseenseesanssens 6

2 SPIING REMOTINE.....eeiiiiiieiiieeeiee ettt e et et e e s aee e aeeesaaeeetaeeesaseeesseesssaeesssseessseeessseeessseessnnnes 6
2.1 The concepts involved with Spring Remoting on both server- and client-side....................... 6
2.2 The benefits of Spring Remoting over traditional remoting technologies...............ccccveevrennne. 7
2.3 The remoting protocols supported bY SPIiNg........ccceecveerieriiieniieeiieriie ettt 7
2.4 How Spring Remoting-based RMI is less invasive than plain RMI............c.ccccoiviiiiiiiieneen, 7
2.5 How client and server interact with each Other.............cocoviiiiiiiniinii 8

3 SPIING WED SEIVICES. . eeiuviieiiiiiiiiieiiiieetee ettt e et eeeteeesteeesbeeesabeeessseeessaeassseessssaeasssaessseeessseeensssseens 9
3.1 How do Web Services compare to Remoting and Messaging..........c.ecveevveenieeiiieeenveeeenneeenns 9
3.2 The approach to building web services that Spring-WS supports..........ccceeeevveercieeeeciveeeeeennns 9
3.3 The Object-to-XML frameworks supported by Spring-OXM.........ccccceevieriiienieenieenieeniieeens 9
3.4 The strategies supported to map requests t0 endPOINtS.........cccveeeeeeeerieeeiieeeiie e eeiee e 10
3.5 Of these strategies, how does @PayloadRoot work exactly?..........cccceevveevieniiiiiieniiieeniieeens 11
3.6 The functionality offered by the WebServiceTemplate............cccoeeeeiieeiiieeiiieeiieeieeeiee e 11
3.7 The underlying WS-Security implementations supported by Spring-WS.........c.ccovvreiienenns 11
3.8 How key stores are supported by Spring-WS for use with WS-Security.........ccccevveeeevvnenenn. 12
3.9 Additional ChaPLETS.....cc.uietiiiiieiieeie ettt ettt e et e s tbeesbeessae e nbaeesansaeeenneeas 12

3.9.1 Best practises for Spring Web ServiCes........ccccvviiiiiriiiieiiiieriie e 12
3.9.2 Error HANAIING......ccviiiiiiiieiiecie ettt ettt ettt e e e tae e e ensbeeeensnee s 12
3.9.3 WS H@STINE. . .eeeeeuiieeetieeeiie et et e ettt e et e e et eeeaeeessteeesaseeessseeesseeessseeansseeassaaeeeasssneaesannnes 13
39,4 TNEEICEPIOTS. ¢ et et eitee et ee ettt ettt e et te et te et ee sttt e s bt eesabeeesabeeesabeeennseeessseesnnsaeensaeesnsneennns 13

4 RESTTul services With SPring-MV C........coooiiiiiiiiieeeee ettt e e e sne e e e e 14
4.1 The main REST PriNCIPIES.....ccueeriiiiiieiiieiieiie ettt ettt et aeebeeesaeensaeeeens 14
4.2 Spring MVC is an alternative to JAX-RS, not an implementation.............ccceeeeveeerveeenieennnns 15
4.3 The @RequestMapping annotation, including URI template support..........ccceeceeeereerreennnennns 16
4.4 The @RequestBody and @ResponseBody annotations.............ccceeeeveeercieeerieeessnieeeeeeeeenen. 17
4.5 The functionality offered by the RestTemplate............ccccueviiieniiiiiieiiiiiieiecee e 18

I 02 818 T 1LY N SR 19
5.1 Where can Spring-JMS applications obtain their JMS resources from............cceceeevveenneenne. 19
5.2 The functionality offered by the JmsTemplate............ccccoeeeiiiiiiiiieiiieeeeecee e 19

5.3 The functionality offered by Spring's JMS message listener container, including the use of a

MessageListenerAdapter through the 'method' attribute in the <jms:listener/> element.............. 21
6 Local IMS Transactions With SPring............ccceeeiieiiiiiiiiieiie ettt s 22
6.1 How to enable local JMS transactions with Spring's message listener container................... 22
6.2 If and if so, how is a local JMS transaction made available to the JmsTemplate................... 23
6.3 How does Spring attempt to synchronize a local JMS transaction and a local database
ETANSACEION. ...ttt ettt ettt ettt h ettt b et a e e bt et e st e she e bt e st e eb e e bt e st e sb e e bt eat e e bt e beenbeeeateeea 23
6.4 The functionality offered by the JmsTransactionManager............ccceeeveevcveeencciiieeeeereeeenn 23
7 JTA and Two-phased commit transactions With SPring...........ccccceecieeviienieeiieeniiee e 23
7.1 What guarantees does JTA provide that local transactions do not provide..............cccvveenneen. 23
7.2 How to switch from local to global JTA transactions............cccecceeeeveerieeiiienieeiiieniee e 24
7.3 Where can you obtain a JTA transaction manager from..........ccccceeevveeniieeniieenieeeeeeiieeeeeens 24
7.4 AQItIONAL TOPICS. .eeuurietieiiiietieeie ettt ettt ettt e et e e ttesbeesseeeabeesatesabeesseeenseesseeeansseeeannees 25
7.4.1 Declarative transaction demarcation.............coeueeruierieriieenieeiee sttt 25
8 SPIING INLEGTALION.eiiiiiiiiieiii ettt ettt ettt et e st e et e e ate e b e e sseeenbeesaeesnbeennseeesnseeas 26
8.1 Main concepts (Messages, Channels, Endpoint types)........cccceeeveercieeiniieeniieeriie e 26
Bl] IMIESSAZE. ..eeuuvteeiiieeitie ettt ettt ettt ettt e st e sttt e et e e s bt e et e e a bt e e ab e e e nteeenteeennteeeennn 26
8.1.2 MeSSAZEENAPOINL......ccciiiiiiiiieciie ettt e e e e et e e e aeeeeereeeesaeeeennnsaaaeeeennnns 26
8.1.2.1 Channel AdAPter........cccuiiiiiiiiieiieeit ettt ettt et e s ateestee e eaaeeens 27
8.1.2.2 MeSSAZING GALEWAY.....c.veeeerieeeirieeieiieeiieeesiteeetteestteessreesseeesseeessessssseeeesasssssreeeens 27
8.1.2.3 SEIVICE ACLIVALOT....c..titieiieriiitieie ettt ettt ettt ettt sttt ettt sbe et st e st e e sabee e 28
8.1.2.4 Message TransfOrmeT...........coocuiiiiiiiiiiie e raee e e e e 28
8L 2.5 FAOT ettt ettt sttt 29
81,20 ROULET ...ttt et ettt et e sttt e e e e aaeaeeees 29
B L. 2.7 SPIIET. ittt ettt ettt e et et e e e nteeeenteeeans 30
LI BRI AN o4 (< o1 110) P PPPPPPPPRR 30
8. 1.3 Error HANAIING.....ccuviiiiiiiieiieie ettt ettt ettt e st eeeennaeeenes 31
8.1.4 SPEL EXPIESSIONS. ...cccctiiiiiiieeiuiieeiieeeitteeeitteesitteesseeessseeessseeessseesssseeasssseeesessssssseessensssees 31
8.2 How to programmatically create Nnew MeSSaZeS.c.ueevieruierieeniienieeiiesieeeiteeeeieeeesieeeenns 31
8.3 Using chains and Drid@eS.........ceeuiiiiiiieiiieciiee ettt eee e e e sve e e eestae e e e e snnareaaeeenes 32
8.4 The different Channel types and how each of them should be used.............cccoevereiinnnnnnnne. 33
8.4.1 ChannelINterCEPLOT.vveeeiiireeiieeeieeeeieeeetee et e erreeeeteeetaeeestaeeessaeessseeessseeessseeesssneeesannes 36
8.4.2 Special CRANMELS........c.eeviiiiiiiiiieieee ettt ettt ebe e e e eeeenneee s 36
8.4.3 Temporary reply Channels...........cccuiieiiiiiiiiee e e 36
8.4.4 Point-t0-Point DiSPatCher..........cooiiiiiiiiiiiieeie ettt 37
8.5 The corresponding effects on things like transactions and S€CUTIty..........ccceevvveeeeeriiieereennnns 37
8.6 The need for active polling and how to configure that..............cccoeriiiiiiiniiiiii e, 37
LN o) w1 Yol 7] FO R PSRR 38
9.1 Main concepts (Job, Step, Job Instance, Job Execution, Step Execution, etc.)...................... 38
L 28 O) o SRS P USSP 40
0. 1.2 JODINSTANCE.eueeiieieriieiteie ettt sttt et ettt st sb et eb e sbe et saaeenaneens 42
0.1.3 JODLAUNCRET.........iiiiiiiiiieieee ettt st ettt e e s 42
9.2 The interfaces typically used to implement a chunk-oriented Step.........ccccceeerieriiinieenneenns 43
L2 B 1<) TSP 43
0.2.2 CONTIGUIING @ STEP....vieiiiiiieiieeiieeie ettt ettt ettt e et e et e st e et e eabeeseeeenbaeesnseeeenseeeas 43
0.2.3 Inheritance + abSIraCt STEPveeeviieeiiieeeiie e ettt eee et e et eeste e e aeeensaeeessaeeeeeennes 45
0.2.4 Intercepting SteP EXECULION.eevuiiriieriieeieeriieeteestieeieesieesteesteeesbeesseesnteesseesnseenseeesnsees 45
B T T 4 (51 N 1<) TS PUPRRTUPSR 46
0.2.6 Controlling SteP flOW.......eeiuiiiiiieiieie ettt ettt sttt e e 46
0. 2.7 TLEMREAAECTeeneieiiiee ettt et sttt e e et e e e s 47

0.2 8 TN P TOCESSOTcoeeeiiiieeeeee ettt e e e e ettt ee e e e e e e et asaaeeeeseeeeessaanaeseesanneeens 48

0.2.9 TEEMWIILT. ...ttt ettt et e ettt e st e e be e e e eabeeeeaanaeas 48
0.2.10 Stateful 1t PIrOCESSINEZ. . c..vieeieriieeiieitieeieeriee et estteeteesteeebeesteesbeesseesbeesseeessseeeennneens 48
9.2.11 ExecutionContextPromotionLiSteNeT...........ceeviiieiiiieniieeeiie et e e e 48
9.2.12 Late binding of Job and Step attributes...........cccceerieriiiirieiiieieeieeee e 49
9.2.13 Implementations of ItemReader and [temWIIter............ccoeeeviiieniieieeiieee e, 50
9.3 How and where state can be StOred...........cceeriieiiieiiiiiiieniieiiecee et s 50
9.4 What are job parameters and how are they used...........cccoeeviiiviiiieciiieeeee e, 51
9.5 What is a FieldSetMapper and what is it used fOr..........ccooviieiieriiiiieeeee e, 51
0.5.1 FIeldSet INTEITACE. ... ueieiiiieiiie ettt ettt ee e st e e st e e e e nebaeeeeesnsssneeeeennes 51
0.5.2 FIatFileIteMREAdET.........cccuieiiiiiieiie ettt et 52
0.5.3 LINETOKENIZET......cccuviiiiiieeiiieeiite ettt e e e ettt e et e e s taeessteeesnaeeessaeeeensnssaaaeeennsssneaeeannnns 52
0.5.4 FIClIASEtMAPPET.....ccutiieiiieiieeiie ettt ettt ettt et e st e et e s st e e beeeaeeenbeessaeensseeeenneeeas 52
0.5.5 DefaultLiN@IMaAPPET......cccviieiiieeiiie ettt e ecite et et et e et ee et e e e aaeesraeesnseeesnsaeennssnaaesennnns 53
9.5.6 Mapping Fields DY NaAME.........cceeeiiiiiiiiiiiiieeie ettt e e s 53
9.5.7 Multiple Record Types within a Single File.........ccccoooviiiiiiieiiiieiieeeeeee e, 53
0.6 AdAItIONAL TOPICS. ..euurietieiiiieiieeie ettt ettt ettt et e et e e teeete e beesabeesaeesabeesseeenseenseeeansseeeannees 54
0.6.1 DB ItEMREAAECTS.ccuviieiiieeiiie ettt tee et e e e s e e e s raeesssaeessseeennssaeeeeennnns 54
0.0.2 REPEAL......eteieieie ettt ettt ettt sttt e st e et e e et e et e et e e e ateesbaeesnteenaa 55
9.6.3 Scaling and parallel ProCeSSING........cccvieriuiiiriiieeiiieeiiee et eteeseeeeteeesreeesaeeessaeeeeeennes 55

3/57

1 Tasks and Scheduling

1.1 Spring framework provides

~ uses TaskExecutor and TaskScheduler to abstract Java's asynchronous execution
and scheduling

~ hides differences between Java SE 5, Java SE 6 and Java EE environments

~ features integration classes for scheduling

Timer (part of JDK since 1.3)

Quarz Scheduler

1.2 TaskExecutor abstraction

~identical to java.util.concurrent.Executor interface
public interface TaskExecutor extends Executor {
void execute(Runnable task);

}

~ created to give other Spring components an abstraction for thread pooling where needed
~ TaskExecutor implementations are used as simple JavaBeans within Spring context

~ out of the box implementations:

SimpleAsyncTaskExecutor

o

o

doesn't use thread pool
support concurrency limit — will block further invocations until slot is freed up

SyncTaskExecutor

o

doesn't execute invocation asynchronously (invocation takes place in calling
thread)

ConcurrentTaskExecutor

@)

o

wrapper for a Java 5 java.util.concurrent.Executor interface

rarely used in comparison to ThreadPoolTaskExecutor

SimpleThreadPoolTaskExecutor

@)

subclass of Quartz's SimpleThreadPool which listens to Spring's lifecycle
callbacks

ThreadPoolTaskExecutor
o wrapper foraJava 5 java.util.concurrent.ThreadPoolExecutor
TimerTaskExecutor

o

o

uses a single TimerTask.
different from the SyncTaskExecutor - method invocations are executed in a
separate thread, although they are synchronous in that thread

WorkManagerTaskExecutor

o

convenience class for setting up a Commond WorkManager reference in a
Spring context

implements the WorkManager interface and therefore can be used directly as a
WorkManager as well.

1.3 TaskScheduler abstraction

~ variety of methods for scheduling tasks to run at some point in the future
public interface TaskScheduler {

ScheduledFuture schedule(Runnable task, Trigger trigger);
ScheduledFuture schedule(Runnable task, Date startTime);

4/57

ScheduledFuture scheduleAtFixedRate(Runnable task, Date startTime, long period);
ScheduledFuture scheduleAtFixedRate(Runnable task, long period);

ScheduledFuture scheduleWithFixedDelay(Runnable task, Date startTime,long delay);
ScheduledFuture scheduleWithFixedDelay(Runnable task, long delay);

o fixed-rate — fixed start execution times

o fixed-delay — fixed gap between executions
~ out of the box implementations:

¢ TimerManagerTaskScheduler

o delegates to a CommonJ TimerManager instance, typically configured with a
JNDI-lookup

¢ ThreadPoolTaskScheduler
o can be used whenever external thread management is not a requirement
o delegates to a ScheduledExecutorServiceInstance

o implements Spring's TaskExecutor interface as well (can be used for
immediate execution also)

1.4 Trigger interface

~ execution times may be determined based on past execution outcomes or even arbitrary
conditions

~ single method — Date nextExecutionTime (TriggerContext triggerContext)
~ implementations:

* CronTrigger — scheduling based on Cron expressions

* PeriodicTrigger — accepts a fixed period, an optional initial delay value, and a

boolean to indicate whether the period should be interpreted as a fixed-rate or a
fixed-delay

~ TriggerContext interface is used to determine next execution time

1.5 Annotation Support

~ to enable annotation support:
* add @EnableScheduling and @EnableAsync to one of your @Configuration
classes

» or use XML configuration:

<task:annotation-driven executor="myExecutor" scheduler="myScheduler"/>
<task:executor id="myExecutor" pool-size="5"/>
<task:scheduler id="myScheduler" pool-size="10"/>}

~ for more fine-grained control you can additionally implement the

SchedulingConfigurer and/or AsyncConfigurer interfaces
~ @Scheduled annotation

* methods must have void returns
* methods must not expect any arguments
* annotation parameters
© fixedDelay
© fixedRate
© initialDelay
© cron
~ @Async annotation
* invocation of method will occur asynchronously
* methods can expect arguments, because they will be invoked in the "normal" way

5/57

by callers at run-time
* methods must be void or return Future type
» can't be used in conjunction with lifecycle callbacks (e.g. @PostConstruct)

» can have qualifier to override default configured task executor
@Async
Future<String> returnSomething(int i) {
// this will be executed asynchronously
}

1.6 Task Namespace

~ scheduler element — create a ThreadPoolTaskScheduler instance with the

specified thread pool size
<task:scheduler id="scheduler" pool-size="10"/>

~ executor element - create a ThreadPoolTaskExecutor instance
<task:executor id="executor" pool-size="70"/>
<task:executor id="executorWithPoolSizeRange" pool-size="5-25"
queue-capacity="700"/>
~pool-size — can have two value forms
* single value — specifies core pool size
o number of threads to keep in the pool, even if they are idle
* range of values
o first value — specifies core pool size (default is 1)
o second value — specifies maximum pool size (default is Integer .MAX_VALUE)
~ queue—-capacity
* capacity for the ThreadPoolExecutor's BlockingQueue
* holds scheduled tasks when there isn't free thread in pool
* when capacity is reached, rejects to schedule new tasks
* defaultis Integer.MAX_VALUE
o often not desirable, because Out OfMemory can occur
~ scheduled-tasks element - support for configuring tasks to be scheduled within a

Spring Application Context

<task:scheduled-tasks scheduler="myScheduler">
<task:scheduled ref="beanA" method="methodA" fixed-delay="5000"/>
<task:scheduled ref="beanB" method="methodB" fixed-rate="5000"/>
<task:scheduled ref="beanC" method="methodC" cron="#*/5 * * * * WMON-FRI"/>

</task:scheduled-tasks>

1.7 Application Servers

~ JEE apps shouldn't use threads directly

~ Spring can integrate with application servers via
« Commond
« JCA

~ Application server handles configuration

2 Spring Remoting

2.1 The concepts involved with Spring Remoting on both server- and
client-side

~ Remoting — synchronous calls of remote methods

6/57

~ Spring Remoting goals
» Decouple from remoting specific code
» Declarative approach to configure and expose services
» Support various protocols

~ Server side: provides exporters to handle requests
« Binding to RMI registry or endpoint exposing

~ Client side: provides FactoryBeans that generate proxies
* Invoke methods on remote server
» Convert remote exceptions to runtime

2.2 The benefits of Spring Remoting over traditional remoting
technologies

~ Configuration-based approach
» Server
o Expose existing business services without code changes
* Client
o Existing code doesn't have to be changed when invoking remote methods
o Can use dependency injection
~ Exporters and proxy FactoryBeans provide consistent access via multiple protocols
* Server
o Expose a single service over multiple protocols
* Client
o Replace protocols easily
o Switch between remote and local implementations
~ Hiding remoting infrastructure

» Server
o No need to extend remoting interfaces (e.g. Remote)
* Client

© RemoteException is translated into runtime

2.3 The remoting protocols supported by Spring

* Remote method invocation (RMI-IIOP)

* HTTPInvoker — Spring provides a special remoting strategy which allows for Java
serialization via HTTP

* Hessian - lightweight binary HTTP-based protocol designed by Caucho

* Burlap — XML based alternative to Hessian

* JAX-RPC - replaced by JAX-WS from Java EE 5/ Java 6

« JMS

2.4 How Spring Remoting-based RMI is less invasive than plain RMI

~ Server side:
* exposing POJO services (via RmiServiceExporter)
* exposed service interfaces don't have to extend java.rmi.Remote
» the binding in the RMI registry is done automatically by Spring
~ Client side:
* Spring converts checked exceptions java.rmi.RemoteException into

7/57

unchecked (runtime) exceptions RemoteAccessException
» Spring provides factory (RmiProxyFactoryBean) dynamically generates the
client-side proxy (no need to use traditional RMI stub).
~ Warning: classes exchanged must always implement the Serializable interface

2.5 How client and server interact with each other

~ Via remoting protocol
~ Server needs to expose service
* Must provide service implementation bean (service property below)
* Must provide service interface (servicelnterface property below)
* Must publish the service
o RMI — using RMI registry
<bean class="org.springframework.remoting.rmi.RmiServiceExporter">
<!-- does not necessarily have to be the same name as the bean to be
exported -->
<property name="serviceName" value="AccountService" />
<property name="service" ref="accountService" />
<property name="servicelnterface" value="example.AccountService" />
<!l-- defaults to 1099 -->
<property name="registryPort" value="71799" />
</bean>

o HTTP invoker — various ways how to configure
= Using servlet container + Spring MVC
* register DispatcherServlet into servlet container

* example of bean in specified in belonging context:
<bean name="/AccountService"
class="org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter">
<property name="service" ref="accountService"/>
<property name="servicelnterface" value="example.AccountService"/>
</bean>

= Using servlet container without Spring MVC support
* register HttpRequestHandlerServlet into servlet container

* example of bean in specified in belonging context:
<bean name="accountExporter"
class="org.springframework.remoting.httpinvoker.HttpInvokerServiceExporter">
<property name="service" ref="accountService"/>
<property name="servicelnterface" value="example.AccountService"/>
</bean>

= Don't use servlet container at all

* SimpleHttpServerFactoryBean +
SimpleHttpInvokerServiceExporter
<bean name="accountExporter" class="org.springframework.remoting.
httpinvoker.SimpleHttpInvokerServiceExporter">
<property name="service" ref="accountService" />
<property name="servicelnterface" value="example.AccountService" />
</bean>
<bean id="httpServer"”

class="org.springframework.remoting.support.SimpleHttpServerFactoryBean">

<property name="contexts">
<util:map>
<entry key="/remoting/AccountService" value-ref=
"accountExporter" />
</util:map>
</property>

8/57

<property name="port" value="8080" />
</bean>
~ Client uses proxy to invoke service functionality (bean from example below can be used
as if it was local bean)
* RMI example:
<bean id="accountService"
class="org.springframework.remoting.rmi.RmiProxyFactoryBean">
<property name="serviceUrl" value="rmi://HOST:1199/AccountService" />
<property name="servicelnterface" value="example.AccountService" />
</bean>
 HTTP invoker example:
<bean id="accountService”
class=*“org.springframework.remoting.httpinvoker.HttpInvokerProxyFactoryBean">
<property name=“servicelnterface” value="example.AccountService”/>
<property name=“serviceUrl”
value=“http://HOST:8080//remoting/AccountService”/>
</bean>

3 Spring Web Services

3.1 How do Web Services compare to Remoting and Messaging

* Loose Coupling — we define document-oriented contract between service
consumers and providers

* Interoperability — XML payload (is understood by all major platforms like Java. NET,
C++, Ruby, PHP, Perl,...)

3.2 The approach to building web services that Spring-WS supports

~ Not using Contract Last approach where XSD/WSDL are generated from Java. Cons:
* XSD extensions — restrictions (e.g. regexp for string) can't be used because Java
doesn't support it
* unportable types into XML
» cyclic graphs from Java are hard to represent in XML
« fragility — if contract (XSD and WSDL) is generated from Java (usually interface)
can be generated differently -> contract can be changed more often
» performance — Java reference graph can easily become very big -> performance hit
during conversion to XML
* versioning — change of contract is easier (e.g. by XSLT conversion from old version
to new)
~ Spring WS uses Contract First approach only (start by writing the XSD/WSDL). Simple
steps:
* create sample messages
* generate XSD (Trang, XML Spy)
+ tweak resulting XSD to fit requirements
* Spring WS has ability to dynamically generate the WSDL from the XSD

3.3 The Object-to-XML frameworks supported by Spring-OXM

Note that Spring-OXM is now a module in Spring 3.0, not in Spring-WS, but for what you
need to know that doesn't matter
* Low level techniques

9/57

o DOM family: JDOM, XOM, Dom4J, TrAX, W3C DOM
o SAX
o StAX
* Marshalling Object / XML (OXM)
o JAXB 1 and 2 (standard Java)
o Castor XML
o XML Beans
o XStream
o JiBX
» Xpath argument binding

~ JAXB2 marshaller can be declared manually (as a part of Spring OXM):
<oxm:jaxb2-marshaller id="marshaller" contextPath="marshaller.package"/>

~ or Spring WS can register infrastructure beans for annotation driven (un)marshalling
(including JABX2) by tag: <ws:annotation-driven/>

3.4 The strategies supported to map requests to endpoints

~ Endpoints (@Endpoint) provide access to the application behavior which is typically
defined by a business service interface. An endpoint interprets the XML request message
and uses that input to invoke a method on the business service (typically).
~ This list below describes the complete process a request goes through when handled by
a MessageDispatcher:
1. An appropriate endpoint is searched for using the configured EndpointMappings.
If an endpoint is found, the invocation chain associated with the endpoint (pre-
processors, post-processors, and endpoints) will be executed in order to create a
response.
2. An appropriate adapter is searched for the endpoint. The MessageDispatcher
delegates to this adapter to invoke the endpoint.
3. If aresponse is returned, it is sent on its way. If no response is returned (which
could be due to a pre- or post-processor intercepting the request, for example, for
security reasons), no response is sent.

|.-Message Dispatcher :EndpointMapping EndpointAdapter endpaint

dispatch({request) ! i

-
1

getEndpoint{request) !

endpoint

invoke(requgst, endpoint)
1

i invokerequest)
, response
: I ponse ___
response

e -

response

~ Mapping techniques are based on:
* Message Payload (ePayloadRoot)
» SOAP Action Header (@SoapAction)
* WS-Addressing

10/57

* Xpath
~ Automatic publishing of generated WSDL
<ws:dynamic-wsdl id="transferDefinition" portTypeName="Transfers"
locationUri="http://somehost:8080/transferService/">

<ws:xsd location="/WEB-INF/transfer.xsd"/>

</ws:dynamic-wsdl>
— will expose WSDL to address:
http://somehost:8080/transferService/transferDefinition.wsdl

3.5 Of these strategies, how does @PayloadRoot work exactly?

~ @Endpoint (class annotation) — marks that class will be used as web services endpoint
bean

~ @PayloadRoot (method annotation) - maps the root tag of the SOAP request body (the
payload) on a bean method.

~ localPart (parameter of @PayloadRoot annotation) — specifies XSD/WSDL root
element of the request payload

~ namespace (parameter of @PayloadRoot annotation) — specifies namespace URL

~ @RequestPayload — indicates that this method parameter should be mapped to the
payload of request message

~ @ResponsePayload - indicates that the return value is used as the payload of the
response message. If the return value is void (without annotation), no response is send

@PayloadRoot(localPart="helloRequest", namespace="http://myapp.com/hello")
public @ResponsePayload Hello sayHello (@RequestPayload Person onePerson){

3.6 The functionality offered by the WebServiceTemplate

~ Simplifies invoking web services
~ Works directly with XML payload
» of a SOAP message body
* or POX (Plain Old XML)
~ Supports marshalling/unmarshalling
~ Provides methods for sending and receiving messages
~ Mechanism callback methods (callback) calls for low level (eg access to SOAP headers)
~WebServiceTemplate properties
* defaultUri
* marshaller
* unmarshaller
~ Expandable by adding interceptors (e.g. for validating)
~ Exception handling provided by the ScapFautMessageResolver that wraps errors in
a SoapFaultClientException. Opportunity to provide their own resolver.
~ Allows multiple protocols: HTTP, Mail, JMS, XMPP

~ Example:
Hello response = (Hello) webServiceTemplate.marshalSendAndReceive(person);

3.7 The underlying WS-Security implementations supported by Spring-
ws

~ Securing web services in terms of signature authentication and encryption is
implemented using interceptors.
* XwsSecurityInterceptor based package Sun XML and Web Services Security

11/57

(XWSS) Sun. Prerequisites: Sun JDK / Oracle and the reference implementation of
Sun SAAJ. Requires a security policy file to operate.

* Wssd4jSecurityInterceptor forintegrating Apache WSS4J implements
standards:
o SOAP Message Security 1.0 (OASIS)
o Username Token Profile 1.0
o X.509 Token Profile 1.0

3.8 How key stores are supported by Spring-WS for use with WS-
Security

~ Most cryptographic operations requires a standard java.security.KeyStore. The
keystore stores three types of elements:
1. Private Key: Used by WS-Security to sign and decrypt
2. Symmetric key (or secret key): client and server store the same key. The latter is
used to both encrypt and decrypt.
3. Trust certificates (X509). WS-Security uses to validate certifications, verify the
signature and encryption.
~ KeyStoreFactoryBean can be used to easily load keystores using Spring
configuration. It has two properties:
* location to the keystore (eg classphath: truststore.jks or keystore.jks)
* password for the keystore.
~ When is security XWSS based, KeyStoreCallbackHandler is needed to handle
various cryptographic callbacks. It has three parameters (exact stores used by the handler
depend on the cryptographic operations that are to be performed by this handler):
* keyStore
* trustStore
* symmetricStore
~ To manage certificates, WSS4J uses a keystore file that is referenced by the
CryptoFactoryBean class.

3.9 Additional chapters

3.9.1 Best practises for Spring Web Services

» Contract-first approach
* Don't use stubs and skeletons to promote separate evolution of contract and code
» Skipping validation (not necessarily good practise)

3.9.2 Error Handling

~ EndpointExceptionResolver interface converts exceptions thrown from endpoint

methods to SOAP messages (replaces regular response messages with SOAP faults)
public interface EndpointExceptionResolver {

boolean resolveException(MessageContext messageContext,

Object endpoint, Exception ex);

I3
~ SimpleSoapExceptionResolver — default implementation, that creates SOAP 1.1

Server or SOAP1.2 Receiver fault and uses the exception message as the fault string
~ SoapFaultMappingExceptionResolver — take the class name of any exception
that might be thrown and map it to a SOAP Fault

<bean class="org.springframework.ws.

12/57

soap.server.endpoint.SoapFaultMappingExceptionResolver ">
<property name="exceptionMappings">
<value>
java.lang.NumberFormatException=CLIENT, Invalid format
</value>
</property>
</bean>
~ SoapFaultAnnotationExceptionResolver — can annotate exception with
@SoapFault, to indicate the SOAP Fault that should be returned whenever that exception

is thrown (exception message -> SOAP fault string)
@SoapFault(faultCode = FaultCode.SERVER)
public class MyBusinessException extends Exception {
public MyClientException(String message) {
super (message);
}
}

~ SoapFaultMessageResolver
» used on client side by WebServiceTemplate
» default implementation for fault response handling
* WebServiceTemplate throws SoapFaultClientException exception
o wraps received SOAP error message and coverts into SoapFault
* can be replaced by custom implementation via property faultMessageResolver
in WebServiceTemplate declaration

3.9.3 WS testing

~ Spring WS provides out of container integration testing with various expectations support
~ Server side
1. Create a MockWebServiceClient instance by calling its factory methods
2. Send request messages by calling sendRequest method (possibly use
RequestCreator callback)
3. Set up response expectations by calling andExpect (possibly use
ResponseMatcher callback)

mockClient = MockWebServiceClient.createClient(applicationContext);

Source requestPayload = new StringSource("...");

Source responsePayload = new StringSource("...");

mockClient.sendRequest(RequestCreators. WlthPayload(requestPayload))
.andExpect(ResponseMatchers.payload(responsePayload));

~ Client side

1. Create a MockWebServiceServer instance by calling its factory methods

2. Set up request expectations by calling expect method (possibly use
RequestMatcher callback)

3. Create an appropriate response message by calling andRespond (possibly use
ResponseCreator callback)

4. Use the WebServiceTemplate

5. Call verify to check expectations

3.9.4 Interceptors

~ callbacks during message handling flow
~ EndpointInterceptor interface methods:

13/57

* handleRequest — before endpoint is called
* handleResponse — after endpoint was process without fault
* handleFault — after endpoint was processed with fault
~ with false return value can stop processing of invocation chain
~ methods can amend MessageContext request or response
~ Spring WS provides built-in implementations for
* logging (SoapEnvelopeloggingInterceptor,
PayloadLoggingInterceptor)
* payload validation (PayloadvalidatingInterceptor)
* XSLT transformation (PayloadTransformingInterceptor)
* WS-Addressing support (AddressingEndpointInterceptor)
* security (XwsSecurityInterceptor, Wss4jSecurityInterceptor)
~ also provides support for client side interceptors (built-in interceptors for validation and

security)

<ws:interceptors>
<bean class="org.springframework.ws.server.

endpoint.interceptor.PayloadlLoggingInterceptor"/>

</ws:interceptors>

4 RESTful services with Spring-MVC

4.1 The main REST principles

~ Architectural style based on HTTP
~ HTTP is used as the application protocol (not as a transport layer in SOAP)
~ Five key concepts:
1. Identification of resources
* everything is resource, e.g. a business entity
* resources are represented as URIs
2. Uniform interface — contains operations to access resources
* many resources (nouns)
» few operations (verbs)

4

GET

1. allows read-only access to the representation of a resource

2. safe operation — no side effects

3. cacheable (headers E-Tag or Last-Modified => code 304 Not Modified)
HEAD

1. similarto a GET

2. without body

3. used when saving bandwidth

POST

1. creates new resource

2. Location header is send back to indicate URI of created resource
3. non-idempotent operation.

PUT

1. updates or create resource identified by a URI

2. idempotent

3. not safe (has side effects)

DELETE

1. deletes a resource

14/57

2. idempotent
3. not safe

3. Resource representations

* resources are abstracted from its representations

* resource can have various representations (text / html, image / png)
* request uses header Accept to specify desired representation

* response uses header Content-Type to indicate representation

4. Stateless conversation

* no client content is being stored on server

* client can maintain state (via HTTP links)

* scalable architecture — any server instance can serve the request
* loose coupling — no shared session

* enables easy scaling of server in production environment

5. Hypermedia

* resources contain hypermedia links

* clients make state transitions only through actions that are dynamically identified
by these links

* no need to update client when server is changed

» client has to conform some server semantics

~ ldempotency (not just for RESTful applications)

multiple identical requests should have the same effect as a single request
helps with integration (client can retry request without side effects)

~ Advantages of REST

Scalability of component interactions

Protocol support

o Languages

o Scripts

o Browsers —only GET and POST through HTML
Redirect

Caching

Different representations

Simple Organizing resources

Pluggable formats (e.g. XML, JSON, Atom,...)
Simple load balancing

Decouples client from server

~ Security

possible with HTTP Basic or Digest

every request must have authentication (REST is stateless!!!)
transport level security — requires SSL

message level security — use of XML-DSIG and XML-Encryption

~ HTTP (and therefore also REST) is not suitable for long-running transactions (use
compensating transactions instead)

4.2 Spring MVC is an alternative to JAX-RS, not an implementation
~ Two options how to use Spring for REST (both are valid)

1.

JAX-RS

2. Spring MVC 3.0 with REST

15/57

~ JAX-RS is a standard: Java API for RESTful Web Services (JSR-311)
» focuses mostly on app-2-app communication
» Jersey and CXF are implementations

« JAX-RS annotations: @Path, @GET, @GPOST, @Produces, @PathParam
import javax.ws.rs.*;
import org.springframework.stereotype.Component;
import org.springframework.context.annotation.Scope;

@Path("/customer/{id}")
@Component
@Scope("request")
public class CustomerService {
@GET
@Produces({"application/json"})
public Customer getCustomer(@PathParam("id") String customerld) {
return ...
}

}
~ Spring MVC with REST (since Spring version 3.0):

* URI templates

* Content negotiation

» Declarative response status codes (no View is used)
e Client side with RestTemplate

* Message converters

» Easier for developers familiar with Spring MVC

* Supports browsers and REST clients

~ Example:

@Controller

@RequestMapping("/pets/{petId}")

public class PetController {
@RequestMapping(method=RequestMethod.GET)
public @ResponseBody Pet getPet(@PathVariable String petId) {

return ...

}

}

4.3 The @RequestMapping annotation, including URI template support

~ @RequestMapping annotation
» specifies how will be request mapped into controller methods
* can be used at
o class level — typically specifies base URI (or URI pattern) for all methods
handling the request
o method level — narrowing the primary mapping for a specific HTTP method
request method (GET, POST, etc.) or an HTTP request parameter condition
* parameters
© consumes - consumable media types of the mapped request, narrowing the
primary mapping
© headers - headers of the mapped request, narrowing the primary mapping
o method - HTTP request methods to map to, narrowing the primary mapping:
GET, POST, HEAD, OPTIONS, PUT, DELETE, TRACE
o params - parameters of the mapped request, narrowing the primary mapping
o produces - producible media types of the mapped request, narrowing the

16/57

primary mapping
o value - primary mapping expressed by this annotation
~ URI template patterns

* convenient access to selected parts of a URL in a @RequestMapping method
@RequestMapping(value="/pets/{petId}", method=RequestMethod.GET)
public @ResponseBody Pet getPet(@PathVariable String petId) {

return ... }
* (@PathvVariable parameter is not necessary if the parameter name is the same as
pattern

* when a @pPathvVariable annotation is used on a Map<String, String>
argument, the map is populated with all URI template variables
* regular expressions can be used
@RequestMapping("/spring-web/{symbolicName: [a-z-]+}-{version:\\d\\.\\d\\.\\d}
{extension:\\.[a-z]+}")
public void handle(@PathVariable String version, @PathVariable String
extension) {
/...

}
}
~ Other tweaks with URI

* Path patterns
* Patterns with placeholders
* Matrix variables

~ Declarative response status codes (no View)

@RequestMapping(value="/pets", method=RequestMethod.POST)
@ResponseStatus(HttpStatus.CREATED) // 201

public void createPet(HttpServletRequest req, HttpServletResponse resp) {

...}
~ Business exceptions can be annotated with @ResponseStatus

4.4 The @RequestBody and @ResponseBody annotations

~ @ResponseBody
* No View is used
* Return instance is converted into HTTP response body
* Accept header specifies converter / marshaller

o XML via JAXB2, JSON via Jackson,...
@RequestMapping(value="/pets/{petId}", method=RequestMethod.GET)
public @ResponseBody Pet getPet(@PathVariable String petId) {

return ... }
~ QRequestBody

e Used with POST, PUT
 HTTP request body is converted to method parameter

* Content-Type of request specifies converter
@RequestMapping(value="/pets/{petId}", method=RequestMethod.PUT)
@ResponseStatus(HttpStatus.NO_CONTENT) // 204
public void updatePet(@RequestBody Pet updatePet,

@PathVariable("petId") long id) {
// process updated order data and return empty response

17/57

4.5 The functionality offered by the Rest Template

* Provides client access to RESTful services
* Also supports URI templates
* HTTP message conversion

* Manipulating HTTP headers and content via Ht t pEnt ity (since version 3.0.2)

HTTP method | RestTemplate methods

DELETE delete (String url, String... urlVariables)

GET getForObject (String url, Class<T> responseType,
String... urlVariables)
getForEntity (String url, Class<T> responseType,
String... urlVariables)

HEAD headForHeaders (String url, String... urlVariables)

OPTIONS optionsForAllow (String url, String... urlVariables)

POST postForLocation (String url, Object request, String...
urlVariables)

postForObject (String url, Object request, Class<T>

responseType, String... uriVariables)
postForEntity (String url, Object request, Class<T>
responseType, String... uriVariables)

PUT put (String url, Object request, String...urlVariables)

~ RestTemplate usage

1. Creation via constructor
RestTemplate template = new RestTemplate();

» Various out of the box HTTP message converters (like on server)
2. XML configuration

Client side usage examples:

RestTemplate template = new RestTemplate();

String uri = "http://petshop.com/pets/categories/{category}";
// GET all pets from category dogs:

Pet[] pets = template.getForObject(uri, Pet[].class, "dogs");
// POST to create pet

URI itemLocation = template.postForLocation(uri, pet, "dogs");
// PUT to update the pet

pet.setName("Rexo");

template.put(itemLocation, pet);

// DELETE to remove the pet

template.delete(itemLocation);

HttpEntity<String> request = new HttpEntity<String>("Do you have a dog?",

MediaType.TEXT_PLAIN);

URI location = template.postForLocation("http://petshop.com/", request);

// wait for response reception

ResponseEntity<String> response =
template.getForEntity("http://petshop.com", String.class);
HttpStatus status = response.getStatusCode();

MediaType contentType = response.getHeaders().getContentType();
String body = response.getBody();

18/57

5 Spring JMS

5.1 Where can Spring-JMS applications obtain their JMS resources
from

~ Spring JMS is designed to decouple application from JMS infrastructure
* Spring instantiates JMS resources
* Application uses Spring API (e.g. JmsTemplate)

~ Spring JMS also provides various deployment choices
» Standalone JMS provider

© ConnectionFactory implementation
<bean id="connectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">
<property name="brokerURL" value="tcp://localhost:8082"/>
</bean>

o Destination implementation (Queue or Topic)

<bean id="defaultQueue" class="org.apache.activemq.command.ActivelMQQueue">
<constructor-arg value="queue.name"/>

</bean>

* Pick up JMS implementation from JEE application server via JNDI

© ConnectionFactory implementation
<jee:jndi-lookup id="connectionFactory" jndi-name="jms/ConnectionFactory"/>

o Destination implementation (Queue or Topic)
<jee:jndi-lookup id=“defaultQueue” jndi-name=“jms/DefaultQueue”/>
~ ConnectionFactory, Queue, Topic interfaces are part of JMS specification (JMS
resources)

5.2 The functionality offered by the JmsTemplate

~ JmsTemplate is central class of Spring JMS and handles creation and release of JMS
resources during
* message production
* synchronous message consumption
~ For asynchronous message consumption is used MessageListenerContainer
~ Advantages of JmsTemplate
* Reduces amount of JMS specific code
* Handles creation and release of JMS resources transparently
* Has better mechanisms to handle exceptions
* No need to catch JMS checked exceptions — converts into runtime
* Provides handier methods and JdbcTemplate like callbacks
~ JmsTemplate delegates some responsibilities to instances of following interfaces
* DestinationResolver —resolution of a destination name to a JMS destination
object
* MessageConverter — message conversion process
~ MessageConverter interface — defines a simple contract to convert between Java
objects and JMS messages
* SimpleMessageConverter
o default implementation
o handles conversion between
" Stringand TextMessage

19/57

= byte[] and BytesMesssage
" Java.util.Map and MapMessage
" Serializable and ObjectMessage
* MapMessageConverter — uses reflection to convert between a Java bean and a
MapMessage
* Custom implementation is suitable sometimes for
o XML marshalling into TextMessage — JAXB, Castor, XMLBeans, XStream
o Steps for custom implementation:

= |mplement
public interface MessageConverter {

Message toMessage(Object object, Session session) throws JMSException,
MessageConversionException;

Object fromMessage(Message message) throws JMSException,
MessageConversionException;

}
= Pass the implementation into JmsTemplate
~DestinationResolver interface

* Only one method
public interface DestinationResolver {
Destination resolveDestinationName(Session session, String
destinationName, boolean pubSubDomain) throws JMSException;

* JndiDestinationResolver — service locator for destinations contained in JNDI
¢ DynamicDestinationResolver
o default implementation
o accommodates resolving dynamic destinations
o may then also create a physical destination
~ Creation of JmsTemplate
* mandatory parameter connectionFactory to obtain JMS Connections from
* main optional parameters:
© messageConverter - resolve Object parameters to convertAndSend
methods and Ob ject results from receiveAndConvert methods
© destinationResolver —resolving destination names from simple Strings
to actual Destination implementation instances
© defaultDestination — destination to be used on send/receive operations
that do not have a destination parameter
<bean id="jmsTemplate" class="org.springframework.jms.core.JmsTemplate" >

<property name="connectionFactory" ref="connectionFactory" />

<property name="defaultDestination" ref="defaultDestination" />
</bean>

~ JMS resource caching
JmsTemplate assumes that JMS resources are being cached by JMS provider — closes
and reopens them. But this is not effective without caching. So there is possibility to wrap
ConnectionFacotry implementation into CachingConnectionFactory which is
provided by Spring JMS and does caching of JMS resources.
~ Sending messages — JmsTemplate contains many convenience methods

» those that specify destination using javax. jms.Destination

» those that specify destination using spring for use in JNDI

» those that do not specify destination — use template's default destination

» those that leverage template's message converter

» callbacks that reveal JMS resources for more control

20/57

* those that specify MessagePostProcessor
Some examples:
public void convertAndSend(Destination destination, Object message)
public void send(MessageCreator messageCreator)
public <T> T execute(Destination destination, ProducerCallback<T> action)
public <T> T execute(SessionCallback<T> action, boolean startConnection)
~ Synchronous receiving messages

* similar convenience methods combinations as for sending

* methods with blocking of caller thread
public Message receive()
public Message receive(Destination destination)
public Message receive(String destinationName)

* leverage of MessageConverter
public Object receiveAndConvert(Destination destination)

5.3 The functionality offered by Spring's JMS message listener
container, including the use of a MessageListenerAdapter
through the ‘method’ attribute in the <jms:1listener/> element

~ Message listener container
* Used for asynchronous message reception from JMS message queue and drive
MessageListener thatis injected into it
* Dispatches messages into MessageListener
* Usually this mechanism is used by EJB container (Message driven POJO)
* Provides support for scheduling and endpoint management
* Provides two message listener container implementations
© SimpleMessagelistenerContainer
= creates a fixed number of JMS sessions and consumers at startup
= registers the listener using the standard JMS
MessageConsumer.setMessageListener () method
= |eaves it up the JMS provider to perform listener callbacks
= does not allow for dynamic adaption to runtime demands
= does not allow participation in externally managed transactions
= not compatible with Java EE's JMS restrictions
© DefaultMessagelListenerContainer
= does allow for dynamic adaption to runtime demands
= s able to participate in externally managed transactions
= each received message is registered with an XA transaction when configured
with a JtaTransactionManager
~ Listener bean
* can implement
o MessageListener —JMS interface with one method that should be
implemented by application
void onMessage(Message message)
© SessionAwareMessageListener — Spring JMS listener interface that allows
tweaking with JMS Session
* or can be used any bean directly via MessagelListenerAdapter

<jms:listener destination="queue.orders" ref="orderService" method="placeOrder"
response-destination="queue.confirmations" />

~ Definition of MessageListenerContainer

21/57

<jms:listener-container connection-factory="connectionFactory">
<jms:listener destination="queue.orders" ref="orderService"
method="placeOrder"/>
<jms:listener destination="queue.confirmations" ref="confirmationListener"/>
</jms:listener-container>

* Allows configuration of
o task execution strategy
© concurrency
o container type

o transaction manager
o

<jms:listener-container connection-factory="myConnectionFactory"
task-executor="myTaskExecutor"
destination-resolver="myDestinationResolver"
transaction-manager="myTransactionManager"
concurrency="70">
<jms:listener destination="queue.orders" ref="orderService"
method="placeOrder" />
<jms:listener destination="queue.confirmations" ref="confirmationLogger"
method="log" />
</jms:listener-container>

6 Local JMS Transactions with Spring

6.1 How to enable local JMS transactions with Spring's message
listener container

1. When message listener container parameter acknowledge is set to value

transacted
<jms:listener-container acknowledge="transacted">

</jms:listener-container>
* Other possible values:
¢ auto
» default value
* no transaction
* acknowledge immediately after successful reception

* slower
* message can be lost
¢ client

* no transaction
* client must acknowledge reception explicitly
* dupes can occur if used properly (acknowledge after DB TX commit)
& dupes-ok
* no transaction
* acknowledging is handled by JMS provider and dupes can occur
+ faster then auto
2. When transaction manager is used by message listener container
* Usually for JTA
~ Transaction is created after reception when no JTA TX is in progress

22/57

6.2 If and if so, how is a local JMS transaction made available to the
JmsTemplate

~ JmsTemplate parameters for Session can be specified
o sessionTransacted
* sessionAcknowledgeMode — will be ignored if sessionTransacted is
specified
~ Same Session instance is used for receiving and sending

6.3 How does Spring attempt to synchronize a local JMS transaction
and a local database transaction

~ User can use 'best effort' strategies
* Commit database before JMS commit on message reception
o Messages wouldn't be lost
o But can duplicate messages if error occurs during JMS commit
* Invoke commits close to each other to reduce failure risk (best approach is to
invoke JMS commit straight after DB commit)
~ Only using of XA and JTA distributed transactions can ensure transactions synchronizing
~ Handling duplicates
* No problem if processing is idempotent
* If not, duplicity check is needed
o At first, check if current reception is redelivery (this is crucial because avoids DB
calls in most cases)
message.getIJMSRedelivered ()

o No — process message
o Yes — check if message was already processed (most probably check the DB)

6.4 The functionality offered by the JmsTransactionManager

~ JmsTransactionManager
* Performs local resource transactions, binding a JMS Connection/Session pair
from the specified ConnectionFactory to the thread

* The JmsTemplate auto-detects an attached thread and participates automatically
with Session

* The JmsTransationManager allows a CachingConnectionFactory that uses
a single connection for all JMS access (performance gains). All Sessions belong to
the same connection

7 JTA and Two-phased commit transactions with Spring

7.1 What guarantees does JTA provide that local transactions do not
provide

~ XA (X/Open XA) is specification for distributed transaction processing

~ JTA (Java transaction API) is Java implementation that enables handling of transactions
across multiple XA resources

~ More than JTA, it is the use of XA which:

* Guarantee ACID distributed / global transactions
* Coordinates commits of several transactional resources

23/57

* Avoids duplicate messages — messages are delivered once and only once.

7.2 How to switch from local to global JTA transactions

~ No code change needed, switch can be done via configuration
~ Just replace local implementation of transaction manager
(PlatformTransactionManager) with JtaTransactionManager (or some of its
application server vendor specific children that Spring provides)
~ JtaTransactionManager doesn't provide JTA support, it only integrates local
transactions with external (application server) JTA transaction manager
~ If application server specific subclass is used, it allows usage of features that are not in
JTA specification (e.g. transaction suspension)
~ Instance can be created via tx namespace in Spring's XML configuration
<tx:jta-transaction-manager/>

* Than for DB or synchronous JMS access can be used via @Transactional with

<tx:annotation-driven/> Or <tx:advice/>
* For asynchronous JMS reception can be used as parameter for JMS listener

container:
<jms:listener-container transaction-manager="transactionManager">
<jms:listener destination="queue.orders" ref="orderService"
method="placeOrder"/>
<jms:listener destination="queue.confirmations" ref="confirmationlListener"/>
</jms:listener-container>

~ Third party frameworks like Hibernate must be configured specifically for JTA

~ JTA is requirement for EJB transaction handling (even with single transaction resource)
~ It is optional when Spring manages transactions (make sense only for more than one
transaction resources)

~ Switching from local to global transaction handling is very easy with Spring — only little
configuration changes

7.3 Where can you obtain a JTA transaction manager from

~ User can use Spring JTA support in two ways
1. Integrate with JEE application server
2. Stand alone usage of JTA
~ If you use JTA in a Java EE container then you use a container DataSource, obtained
through JNDI, in conjunction with Spring's JtaTransactionManager
<jee:jndi-lookup id="dataSource" jndi-name="jdbc/jpetstore"/>
<bean id="txManager"
class="org.springframework.transaction. jta.JtaTransactionManager"/>
* JtaTransactionManager does not need to know about the DataSource, or any
other specific resources, because it uses the container's global transaction
management infrastructure
* JtaTransactionManager class can optionally perform a JNDI lookup for the JTA
* UserTransaction and TransactionManager objects and autodetect the
location for the latter object, which varies by application server (allows for enhanced
transaction semantics, in particular supporting transaction suspension)
» Each XA transactional resource (dataSource for DB access,
connectionFactory for JMS access) can be retrieved by a <jee:jndi-lookup ..
/>
~ For stand-alone usage
* user needs to manually define a bean transactionManager bean and specify its

24/57

two properties t ransactionManager and userTransaction applications using
JTA implementation (e.g. Atomikos, JOTM, Jboss Transactions (former Arjuna))
* When the bean is named transactionManager, Spring will automatically pick it
up
<bean id="transactionManager"
class="org.springframework.transaction. jta.JtaTransactionManager ">
<property name="transactionManager" ref="atomikosTransactionManager" />

<property name="userTransaction" ref="atomikosUserTransaction" />
</bean>

7.4 Additional topics

7.4.1 Declarative transaction demarcation

» Little bit off the topic but crucial

» Recommended and non-invasive transaction handling in Spring applications

* Replaces explicit transaction demarcation API with an AOP transaction interceptor
» This interceptor can be configured via XML or Java annotations (preferred)

» Allows you to keep business services free of repetitive transaction demarcation
code and to focus on adding business logic

* Two ways how to configure it

© (@Transactional annotation with <tx:annotation-driven/>
@Transactional(readOnly = true)
public List<Product> findAllProducts() {

return this.productDao.findAllProducts();
}

o XML configuration via <tx:advice>
<bean id="transactionManager"
class="org.springframework.orm.hibernate3.HibernateTransactionManager">
<property name="sessionFactory" ref="sessionFactory" />
</bean>
<aop:config>
<aop:pointcut id="productServiceMethods"
expression="execution(* product.ProductService.*(..))" />
<aop:advisor advice-ref="txAdvice" pointcut-ref="productServicelMethods" />
</aop:config>
<tx:advice id="txAdvice" transaction-manager="myTxManager ">
<tx:attributes>
<tx:method name="increasePrice*" propagation="REQUIRED" />
<tx:method name="someBusinessMethod" propagation="REQUIRES_NEW" />
<tx:method name="#*" propagation="SUPPORTS" read-only="true" />
</tx:attributes>
</tx:advice>

o Asynchronous JMS reception transaction demarcation

= |ocal transactions
<jms:listener-container acknowledge="transacted">
<jms:listener ref="jmsListener" destination="jms.queue"/>
</jms:listener-container>

= Global transactions
* use transaction-manager="transactionManager " instead of acknowledge

25/57

8 Spring Integration

8.1 Main concepts (Messages, Channels, Endpoint types)

Pay special attention to the various Endpoint types and how they're used!
~ Spring integration is implementation of Enterprise Integration Patterns
~ Principles
» Components should be loosely coupled for modularity and testability
» The framework should enforce separation of concerns between business logic and
integration logic
» Extension points should be abstract in nature but within well-defined boundaries to
promote reuse and portability
~ Spring Integration uses declarative adapters to
* Connect applications with external systems via various protocols
» Lightweight messaging within Spring-based applications
* Decouple application components from integration infrastructure
o Converts external events into internal messages
o Application components process only messages (typically only payload)

o Can convert Internal message into external event
~ Main Components

* DMessage
* MessageChannel
* MessageEndpoint

8.1.1 Message

public interface Message<T> {
MessageHeaders getHeaders();
T getPayload();

* Is sent or received by MessageEndpoint
* Message parts
o Headers (key/value pairs)
= user defined
» typically used to store metadata
= pre-defined
* ID(java.util.UUID)- unique identifier
* CORRELATION_ID (java.util.Object)
* REPLY_CHANNEL (String Or MessageChannel)

o Payload (Java object)
* Immutable
* Created by

o automatically by Spring Integration framework
o orbyMessageBuilder helper class

8.1.2 MessageEndpoint

* Receives/sends Messages from/into MessageChannel
* Primary role is to connect application code to the messaging framework in a non-

26/57

invasive manner

MessageEndpoints are mapped to MessageChannels to isolate application

code from the infrastructure

Annotation support

o @MessageEndpoint class level annotation indicates that class is used as
message endpoint

o Method level annotation specifies type of the message endpoint

o Method parameters can be annotated with @Header (“headerParameter”)
annotation — Spring injects particular header value into that parameter

8.1.2.1 Channel Adapter

<int

Connects a MessageChannel to some other system or transport
Typically, the Channel Adapter will do some mapping between the Message and
object of other system (File, HTTP Request, JMS Message, etc).
Spring Integration provides a number of Channel Adapters implementations
Output channel parameter is optional, since each Message may also provide its
own 'Return Address' header. This same rule applies for all consumer endpoints.
Types
© Inbound

= Can use poller to trigger input message
o Qutbound
Uni-directional

:inbound-channel-adapter ref="source2" method="method2" channel="channel2">

<int:poller cron="30 * 9-17 * * MON-FRI"/>

</int:channel-adapter>
<int:outbound-channel-adapter channel="channel" method="handle">

<beans:bean class="org.Foo"/>

</int:outbound-channel-adapter>
<int-file:inbound-channel-adapter id="filesIn2"

directory="file:${input.directory}" filter="customFilterBean" />

<int-jdbc:outbound-channel-adapter

query="insert into foos (id, status, name) values (:headers[id], O,

:payload[foo])" data-source="dataSource" channel="input" />

8.1.2.2 Messaging Gateway

<int

Inbound

Primary purpose of a Gateway is to hide Spring Integration messaging API - clients
code interacts with a simple interface only

It acts as proxy

Bi-directional

Typically Gateway will auto-create a temporary, anonymous reply channel, where it
will listen for the reply

Sometimes may prompt you to define a default-reply-channel (or reply—
channel with adapter gateways such as HTTP, JMS, etc.)

:gateway id="cafeService"

service-interface="org.cafeteria.Cafe"
default-request-channel="requestChannel"
default-reply-channel="replyChannel"/>

Return values of gateway interface method
o Other type than Future — Synchronous

27/57

@)

o

= Caller of gateway interface is blocked
Future - Asynchronous

= Callerisn't blocked

= |nterface method returns Future
void

= Acts as passive inbound adapter

» Gateway interface methods and its parameters can be annotated with @Gateway /
@Header
public interface FileWriter {
@Gateway(requestChannel="filesOut")
void write(byte[] content, @Header(FileHeaders.FILENAME) String

filename);

» Apart from above inbound Messaging Gateway (which maps interface onto

messaging infrastructure) Spring provides Integration adapters gateways of two
types for various protocols (JMS, JPA, HTTP, TCP, RMI, Web Services, ...):

o

Inbound gateway — receives external request, send if for internal processing and
sends reply via same protocol / interface

Outbound gateway — sends request to external system and waits for response
These adapters are alternative API to Spring components like Spring MVC for
REST, Spring WS, Spring RMI,...

8.1.2.3 Service Activator

* Generic endpoint for connecting a service instance to the messaging system

* Input Message Channel must be configured

» If the service method to be invoked is capable of returning a value, an output
Message Channel may also be provided

* Invokes an operation on some service object (bean) to process the request
Message

* Extracts the request Message's payload and converts if necessary

* method attribute specifies which method would be invoked

* Or@serviceActivator annotation can be used for that purpose

* Arguments may also have @Header or @Headers

* voidand null return values are supported (means no response), but Outbound
Channel Adapter is more suitable for such case

* If inbound gateway expects reply — can set parameter request-reply to true
(throws exception when null)

» Similar endpoint to Gateway, but responsibilities are different

o

o

Gateway — to map external system into internal messaging infrastructure
Service Activator — to map internal application service into internal messaging
infrastructure

<int:service-activator input-channel="exampleChannel"
output-channel="replyChannel" ref="somePojo" method="someMethod"/>

8.1.2.4 Message Transformer

» Converting a Message's content or structure and returns the modified Message
* In fact service activator with specific role
* Commonly used as

o

payload convertor

28/57

o header enricher
o header filter

* Creates new message, because Message is immutable
<int:transformer id="testTransformer" ref="testTransformerBean"
input-channel="inChannel" method="transform" output-channel="outChannel"/>

* Annotation configuration
@Transformer

Order generateOrder(String productId, @Header("customerName") String customer) {
return new Order(productld, customer);
}

8.1.2.5 Filter

* Determines whether a Message should be passed to an output channel at all

* Return boolean value

» Check for a particular payload content type, a property value, the presence of a
header, etc

* Default behaviour is silent discard

* If Message is not accepted
o can be dropped
o exception can be thrown

* It can support discard channel (acts as simple router)
<int:filter input-channel="input" ref="selector"
output-channel="output" throw-exception-on-rejection="true"/>
<int:filter input-channel="input" ref="selector"
output-channel="output" discard-channel="rejectedllessages"/>

* Annotation configuration
@Filter
public boolean dogsOnly(String input) {...}

8.1.2.6 Router

» Deciding what channel or channels should receive the Message next (if any)
* Typically the decision is based upon the Message's content and/or metadata
available in the Message Headers
* Implementations
© PayloadTypeRouter
© HeaderValueRouter
© RecipientListRouter
o XPath Router

* Or user can specify custom router
<int:router input-channel="input" ref="somePojo" method="someMethod"/>
* Output channel parameter is optional

* Annotation configuration (String return value is channel name/s)
@Router

public MessageChannel route(Message message) {@Header ...}
@Router

public List<MessageChannel> route(Message message) {...}
@Router

public String route(Foo payload) {...}

@Router

public List<String> route(Foo payload) {...}

29/57

8.1.2.7 Splitter

» Splits received Message into multiple Messages and sends each of those to its
output channel

» Often, they are upstream producers in a pipeline that includes an Aggregator

* AbstractMessageSplitter sub-classes or any POJO (method accepts single
argument and return a value) can be configured as splitter

* AbstractMessageSplitter fills appropriate message headers
© CORRELATION_ID
© SEQUENCE_SIZE

© SEQUENCE_NUMBER
<int:splitter id="testSplitter" input-channel="inChannel"
method="split" output-channel="outChannel">
<beans:bean class="org.foo.TestSplitter" />
</int:spliter>

* Annotation configuration
@Splitter
List<LineItem> extractItems(Order order) {
return order.getItems();
}

8.1.2.8 Aggregator

* Receives multiple Messages and combines them into a single Message
* Often downstream consumers in a pipeline that includes a Splitter
» Technically, the Aggregator is more complex than a Splitter, because it is required to
maintain state to decide when the complete group of Messages is available and to
timeout if necessary
* In case of a timeout, it needs to know whether to send the partial results or to
discard them to a separate channel
» Correlates and stores messages, until the group is complete
» At that point, Aggregator combines gathered messages and sends single output
message
* Uses there strategies (user can provide custom implementations)
© CorrelationStrategy
= Default logic is based on CORRELATION_ID
= Custom implementation can be specified via parameters correlation-
method Or correlation-expression
© ReleaseStrategy
= By default will release a group when all Messages included in a sequence
are present, based on the SEQUENCE_STIZE header
= Custom implementation can be specified via parameters release-
strategy-method Or release-strategy—-expression
aggregator input-channel="input" method="sum" output-channel="output">
<beans:bean class="org.foo.PojoAggregator"/>
</aggregator>
* Annotation configuration
public class Waiter {

@Aégregator
public Delivery aggregatingMethod(List<OrderItem> items) {

30/57

¥
@ReleaseStrategy
public boolean releaseChecker(List<Message<?>> messages) {

i'.
@CorrelationStrategy
public String correlateBy(OrderItem item) {

}.
}
8.1.3 Error Handling

* Synchronous error handling
o When error occurs in consumer during synchronous handoff
= message is failed
= error is wrapped into MessageHandlingException
= and propagated to sender
* Asynchronous error handling
o Exception can't be propagated to sender
o Therefore it is sent to error channel
= errorChannel specified in message header
= if header is missing in message, global errorChannel is used
o Global errorChannel

= internally created PublishSubscribeChannel for sending error messages

= may be overridden with a custom configuration

o |tis possible to specify router based on exceptions type
(ErrorMessageExceptionTypeRouter)
<int:exception-type-router input-channel="inputChannel"
default-output-channel="defaultChannel">
<int:mapping exception-type="java.lang.IllegalArgumentException"
channel="illegalChannel" />
<int:mapping exception-type="java.lang.NullPointerException"
channel="npeChannel" />
</int:exception-type-router>

8.1.4 SpEL Expressions

* Alot of endpoints support expression language attribute
* To enable trivial in-line logic

<int:router input-channel="inChannel" expression="payload + 'Channel'"/>
<int:filter input-channel="input" expression="payload.equals('nonsense')"/>

8.2 How to programmatically create new Messages

~ MessageBuilder
* Message interface doesn't provide setters for payload and headers
* MessageBuilder is used for constructing messages

* Two factory methods:
Message<String> messagel = MessageBuilder.withPayload("test")
.setHeader ("foo", "bar")
.build();
Message<String> message2 = MessageBuilder. fromMessage(messagel).build();
Message<String> message3 = MessageBuilder.withPayload("test3")
.copyHeaders(message1.getHeaders())

31/57

.build();

Message<String> message4 = MessageBuilder.withPayload("test4")
.setHeader ("foo", 123)
.copyHeadersIfAbsent(messagel.getHeaders())
Lbuild();

Message<Integer> importantMessage = MessageBuilder.withPayload(99)
.setPriority(5)

.build();

Message<Integer> lessImportantMessage =

MessageBuilder. fromMessage(importantMessage)
.setHeaderIfAbsent(MessageHeaders.PRIORITY, 2)
Lbuild();

~ MessagingTemplate

* Provides sending / receiving support

* Also conversion support

* More invasive as usage of Messaging gateway

* Sometimes MessagingTemplate is handier (e.g. in unit test)

* sendTimeout and receiveTimeout properties may also be set on the template
MessagingTemplate template = new MessagingTemplate();
Message reply = template.sendAndReceive(someChannel, new GenericMessage("f"));

* Some functions provided
public boolean send(final MessageChannel channel, final Message<?> message) {
ce)
public Message<?> sendAndReceive(final MessageChannel channel, final Message<?
> request) {...}
public Message<?> receive(final PollableChannel<?> channel) {...}

8.3 Using chains and bridges

~ Chain

» Chains various endpoints together

* Creates multiple anonymous channels to tie them together

» Chain only requires to specify single input-channel and single output-channel
eliminating the need to define channels for each individual component

* Endpoints except last one have to return output (null value is accepted)

+ Last element in chain have to define output-channel or message should have
replyChannel header

* Reply channel header will not be taken into account within the chain: only after the

last handler
<int:chain input-channel="input" output-channel="output">
<int:filter ref="someSelector" throw-exception-on-rejection="true" />
<int:header-enricher>
<int:header name="foo" value="bar" />
</int:header-enricher>
<int:service-activator ref="someService" method="someMethod" />
</int:chain>
* 'black-box' consumer of the message flow
<int:chain input-channel="input">
<si-xml:marshalling-transformer
marshaller="marshaller" result-type="StringResult" />
<int:service-activator ref="someService" method="someMethod" />
<int:header-enricher>
<int:header name="foo" value="bar" />
</int:header-enricher>
<int:logging-channel-adapter level="INFO" log-full-message="true" />

32/57

</int:chain>
* Disallowed Attributes and Elements
o Disallowed attributes on components within the chain
= order
= input-channel
= poller
* Nested chain can be specified in chain with usage of Messaging gateway
~ Bridge
* simply connects two Message Channels or Channel Adapters
» can throttle inbound Messages by providing an intermediary poller between two
channels
o poller's trigger will determine the rate at which messages arrive on the second
channel
o poller's "maxMessagesPerPoll" property will enforce a limit on the
throughput
» another valid use for a Messaging Bridge is to connect two different systems
o more common is Transformer between the two systems
to translate between their formats

» Connecting channels

<int:bridge input-channel="pollable" output-channel="subscribable">
<int:poller max-messages-per-poll="70" fixed-rate="5000"/>

</int:bridge>

* Connecting channel adapters
<int-stream:stdin-channel-adapter id="stdin"/>
<int-stream:stdout-channel-adapter id="stdout"/>
<int:bridge id="echo" input-channel="stdin" output-channel="stdout"/>

8.4 The different Channel types and how each of them should be used

» Connects Message Endpoints
* Decouples messaging components
» Point of interception and monitoring of message flow
* Channel is passive component
* Two semantic types:
o Point-to-Point - one consumer
o Publish-Subscribe - multiple consumers
* Two handoff types:
o Synchronous
= Consumer is registered into channel and triggered when message is being
sent
= Message is immediately received using sender's thread
= Sender is blocked while message is being processed by consumer endpoint
= Transaction is spread into consumer
= Exception is propagated to sender
= Consumer uses security context of sender
= Channels:
¢ RendezvousChannel
* Synchronous PublishSubscribeChannel
* DirectChannel

33/57

Asynchronous

Consumer actively requests the message in separate thread/s
Consumer can't use transaction and security context of sender
Exceptions (typically) can't be propagated to the sender

To specify that channel is asynchronous, just specifying of XML sub-element
is needed

* Qgueue
* task—-executor
Channels

* QueueChannel

* Asynchronous PublishSubscribeChannel
¢ ExecutorChannel

¢ PriorityChannel

* Simple Spring bean

no additional infrastructure needed (e.g. Broker)
can be optionally persisted (by JMS or JDBC)

* Implemantations

o

o

==Java Interface>=
MessageChannel

2

==Java Interfaces=
PollableChannel

IS

=<Java Interface==
SubscribableChannel

<<Java I&Iass:r:r d
Abstract\fessageChannel

N

=< Java Class»> == Java Classs>
AbstractPollableChannel| | ApsiractSubscribableChannel

i ik BN

==Java Class=> <z ava Classss <z Java Class=» ==Java Class=>>
NullChannel QueueChannel DirectChannel PublishSubscribeChannel

/7 b\ ==Java Class==

=< Java Classss <= Java Clagesss ExecutorChannel
RendezvousChannel | (PriorityChannel

DirectChannel

Point-to-Point semantics - single consumer
Synchronous handoff
Dispatches messages directly to subscriber

Dispatcher can have 1oad-balancer strategy if multiple consumers are
subscribed (default strategy is “round-robin”)

Dispatcher have also failover property

Enables a single thread to perform the operations on "both sides" of the
channel — this behavior is to support transactions

Message producer is blocked by consumers processing — synchronous

<int:channel id="directChannel"/>
QueueChannel

o

34/57

= Point-to-point semantics

= Asynchronous handoff

= Stores messages in internal queue until capacity is reached (default value is
Integer .MAX_VALUE)

= Enforces first-in/first-out (FIFO) ordering

= [f capacity is reached, sender is blocked until some room is available or
timeout is reached

= Can be configured with persistence store for messages

= Receiver needs to poll from separate thread

* Message flow will get stuck if there wouldn't be actively consuming

MessageEndpoint (with poller)
<int:channel id="queueChannel">
<queue capacity="25"/>
</int:channel>

© PriorityChannel
® QueueChannel sub-class
= Processes classes based on priority attribute in message header

= Comparator type custom logic can be specified via constructor
<int:channel id="priorityChannel" datatype="example.Widget">
<int:priority-queue comparator="widgetComparator" capacity="710"/>
</int:channel>

© RendezvousChannel
®» QueueChannel sub-class
= Direct handoff scenario — sender is blocked until poller invoked receive ()

= |tuses a SynchronousQueue (a zero-capacity implementation of
BlockingQueue)

= Sender knows that some receiver has accepted the message
<int:channel id="rendezvousChannel"/>
<int:rendezvous-queue/>
</int:channel>

© PublishSubscribeChannel
= Broadcast message to all subscribers
= |s intended for sending only
= Consumers can't poll for messages
= Have apply-sequence property for implementing Resequencer or
Aggregator El patterns
= Handoff types

* synchronous — publishes message in the sender's thread
<int:publish-subscribe-channel id="pubsubChannel"/>

* asynchronous — using TaskExecutor
<int:publish-subscribe-channel id="pubsubChannel" task-executor="someExecutor"/>

© ExecutorChannel
= Point-to-point semantics
= Asynchronous handoff
= Supports same dispatcher configuration (load-balancer and failover
properties) as DirectChannel

= Delegates to TaskExecutor to perform dispatch — handler invocation
doesn't block senders thread

= Does not support transaction spanning between sender and receiver
<int:channel id="executorChannelWithoutFailover">

35/57

<int:dispatcher task-executor="someExecutor" failover="false"/>
</int:channel>

8.4.1 ChannellInterceptor

* Can be configured

o |Individually for each channel
public interface ChannelInterceptor {
Message<?> preSend(Message<?> message, MessageChannel channel);
void postSend(Message<?> message, MessageChannel channel, boolean sent);
boolean preReceive(MessageChannel channel);
Message<?> postReceive(Message<?> message, MessageChannel channel);

= Methods with return type Message<?>
* Can be used for transforming messages
* Orwith null value prevent further processing (of course any method can
throw RuntimeException)
= preReceive can return false to prevent receive operation to process
o Globally for all channels
= User can specify pattern to match channels to intercept

= order attribute allows ordering in case of multiple global interceptors
<int:channel-interceptor pattern="input*, bar*, foo" order="3">
<bean class="foo.barSampleInterceptor"/>
</int:channel-interceptor>

= WireTab
* El pattern
* Interceptor that sends the Message to another channel without altering
existing flow

» Useful for debugging and monitoring
<int:channel id="in">
<int:interceptors>
<int:wire-tap channel="logger" />
</int:interceptors>
</int:channel>
<int:logging-channel-adapter id="logger" level="DEBUG" />
= Global Wire Tap
<int:wire-tap pattern="input*, bar*, foo" order="3" channel="wiretapChannel"/>

8.4.2 Special Channels

¢ nullChannel
o logs any Message sent to it at DEBUG level and returning immediately
© name nullChannel is reserved in application context
* errorChannel
o internally created PublishSubscribeChannel for sending error messages
© may be overridden with a custom configuration

8.4.3 Temporary reply channels

* Are used by
o Inbound gateways, that doesn't specify reply—-channel explicitly
= anonymous
= point-to-point

36/57

= message header replyChannel is created automatically
o Producer components without output channel specified
= message is converted into output
Automatically disposed after processing message
Good practice is to specify channel explicitly only when it is needed
o intercepting
o publish-subscribe

Point-to-Point Dispatcher

Can be configured for point-to-point SubscridableChannels
Message is delivered only to one handler

But there can be more subscribers

Dispatcher has load-balancer with fail-over support

Default implementation is round-robin

Each handler can have order for fail-over specified

User can disable fail-over / load-balancing
Synchronous — DirectChannel

o Exception is propagated immediately if fail-over is disabled
Asynchronous — ExecutorChannel

o Sender of the message is not blocked

o Message delivery is processed in different thread

8.5 The corresponding effects on things like transactions and security

Two handoff types:
o Synchronous
= Transaction is spread into consumer
= Exception is propagated to sender
= Consumer uses security context of sender
= Low overhead
= No scaling possible

o Asynchronous

= Consumer can't use transaction and security context of sender

= Exceptions can't (typically) be propagated to the sender

= sending method can not assume anything about the relative timing of the
method send () returns, and the delivery and processing of the message
= To specify that channel is asynchronous, just specifying of XML sub-element

is needed
* gueue
* task-executor

8.6 The need for active polling and how to configure that

~ MessageEndpoint is by default passive component — just waits to invoked
~ Consumer endpoints can be changed to active component by using of poller

Is needed for retrieval of messages from PollableChannel
Is used as sub-element in XML configuration of message endpoint
It is polling in one thread by default

37/57

» Poller is using trigger for polling
o standard implementations via properties
B cCcron
= fixed-delay - fixed gap between executions
= fixed-rate - fixed start execution times

o or can use trigger reference via property trigger
<int:poller id="defaultPoller" max-messages-per-poll="5" fixed-rate="3000"/>

» Can use various threads from pool when using task-executor
max-messages—-per—-poll —maximum number of messages to pick up per one
poll operation

* receive-timeout

o amount of time the poller should wait if no messages are available when it
invokes the receive operation

o receiver thread is blocked during timeout interval but is able to retrieve message
immediately while waiting
* Long polling technique can emulate event-driven behaviour when interval trigger is
short (e.g. 50 ms) and receive-timeout islong (e.g. 5 s)
~ Global default poller
* single top level poller with default property setto true
* applies for consumer endpoint with Pol1lableChannel as input-channel
* each such endpoint can override this by local poller
<int:poller id="defaultPoller" default="true" fixed-rate="3000"/>
~ Transaction support for poller
* each receive-and-forward operation can be performed as an atomic unit-of-work
* simply add the transactional sub-element

¢ transaction includes receive () callon PollableChannel
<int:poller fixed-delay="7000">

<int:transactional transaction-manager="txManager" propagation="REQUIRED"
isolation="REPEATABLE_READ" timeout="70000" read-only="false" />
</int:poller>

9 Spring Batch

9.1 Main concepts (Job, Step, Job Instance, Job Execution, Step
Execution, eftc.)

~ Spring Batch is a lightweight, comprehensive batch framework designed to enable the

development of robust batch applications vital for the daily operations of enterprise
systems

~ Provides reusable functions that are essential in processing

* large volumes of records (usually not suitable for short transactions)
time based events (month-end calculations, notices or correspondence)
without user interaction (often handling restarts, error, retries, ...)

long-running jobs (usually in off peak hours/days)
~ Business Scenarios

» Commit batch process periodically

» Concurrent batch processing: parallel processing of a job
» Staged, enterprise message-driven processing

* Massively parallel batch processing

38/57

Manual or scheduled restart after failure

Sequential processing of dependent steps (with extensions to workflow-driven
batches)

Partial processing: skip records (e.g. on rollback)

Whole-batch transaction: for cases with a small batch size or existing stored
procedures/scripts

~ Technical Objectives

Batch developers use the Spring programming model: concentrate on business
logic; let the framework take care of infrastructure.

Clear separation of concerns between the infrastructure, the batch execution
environment, and the batch application.

Provide common, core execution services as interfaces that all projects can
implement.

Provide simple and default implementations of the core execution interfaces that
can be used ‘out of the box'.

Easy to configure, customize, and extend services, by leveraging the spring
framework in all layers.

All existing core services should be easy to replace or extend, without any impact to
the infrastructure layer.

Provide a simple deployment model, with the architecture JARs completely
separate from the application, built using Maven.

~ Spring Batch Domain

39/57

1 ItemReader

1 ItemWriter

1 * 1 1
—— — — ItemProcessor

Jobinstance

\ *

JobExecution \
StepExecution

9.1.1 Job

<job

Entity that encapsulates an entire batch process
Container for steps
Combines multiple steps that belong logically together in a flow

Allows for configuration of properties global to all steps, such as restartability

Job configuration contains

o The simple name of the Job

o Definition and ordering of Steps

o Whether or not the Job is restartable

Default Implementation is SimpleJob

o Creates standard functionality on top of Job

o Batch namespace abstracts away the need to instantiate it directly
Configuring a Job

o Example of job configuration
id="football Job" job-repository="specialRepository">
<step id="playerload" parent="s1" next="gamelLoad" />
<step id="gameload" parent="s2" next="playerSummarization" />
<step 1id="playerSummarization" parent="s3" />
<listeners>
<listener ref="samplelListener" />
</listeners>

</job>

o Three required parameters/dependencies
= name/ID
= JobRepository instance
* if job-repository is not defined, expects bean with name

40/57

JjobRepository
= [ist of Steps
o Optional parameters
B restartable
* launching of a Job is considered to be a 'restart' if a JobExecution
already exists for the particular JobInstance
* default value is true
* Restart can start
o Where job ended up last execution - need to persist
ExecutionContext intance (for Job and step instances)
o From the beginning if the state is not persisted
* Entirely up to the developer to ensure that a new JobInstance is
created in this scenario

m Jisteners

» specifies list of Job's interceptors
public interface JobExecutionListener {
void beforeJob(JobExecution jobExecution);
void afterJob(JobExecution jobExecution);

¢ Annotations @BeforeJob and @AfterJob

= split —for Steps parrallelisation
<split id="split1" next="step4">
<flow>
<step id="stepl" parent="s7" next="step2" />
<step id="step2" parent="s2" />
</flow>
<flow>
<step 1id="step3" parent="s3" />
</flow>
</split>
<step 1d="step4" parent="s4" />
= decision — for declarative flow control

= flow — for externalization of flow definitions and reusability
<job id="job">
<flow id="jobl.flowl" parent="flowl" next="step3" />
<step id="step3" parent="s3" />
</job>
<flow id="flowl">
<step id="step?" parent="s7" next="step2" />
<step id="step2" parent="s2" />
</flow>
* Job Inheritance
o concrete Jobs may inherit properties
o "child" Job will combine its elements and attributes with the parent's
o child will override any of the parent's properties by default

°© merge can be used to combine configurations
<job id="baseJob" abstract="true">

<listeners>

<listener ref="listenerOne" />

</listeners>
</job>
<job id="job1" parent="baseJob">

<step id="step1" parent="standaloneStep" />

41/57

<listeners merge="true">
<listener ref="listenerTwo" />
</listeners>
</job>

9.1.2 JobInstance

* each individual run of the Job must be tracked separately

* JobInstance represents logical job run

each JobInstance can have multiple executions (JobExecution)

only one JobInstance corresponding to a particular Job and identified by
JobParameters can be running at a given time

reusing the same JobInstance will determine, the 'state’ (i.e. the
ExecutionContext) from previous executions will be used

Using a new JobInstance will mean 'start from the beginning'

9.1.3 JobLauncher

» Simple interface for launching a Job with a given set of JobParameters
* Itis expected that implementations will obtain a valid JobExecution from the

JobRepository and execute the Job
public interface JobLauncher {
public JobExecution run(Job job, JobParameters jobParameters) throws
JobExecutionAlreadyRunningException, JobRestartException,
JobInstanceAlreadyCompleteException, JobParametersInvalidException;

* Two invocation behaviours
o Synchronous
= Client (invoker) is blocked until the end of processing

" JobExecution contains ExitStatus.FINISHED or
ExitStatus.FAILED

= Ususaly started from scheduler
o Asynchronous
= run () method does not block the client
= TaskExecutor is configured for JobLauncher
= JobExecution contains ExitStatus.UNKNOWN

= Usefull for HTTP request
<bean id="joblLauncher"
class="org.springframework.batch.core.launch.support.SimpleJoblLauncher">
<property name="jobRepository" ref="jobRepository" />
</bean>

* Running a Job
o From command line
= Java launcher class CommandLineJobRunner
* Command line parameters
o jobPath — spring context XML configuration
o jobName — name/ID of the job to run
o Optional job parameters — key(type)=value pairs
bash$ java CommandLineJobRunner endOfDayJob.xml endOfDay
schedule.date (date)=2007/05/05

* ExitCodeMapper converts ExitStatus returned as part of
JobExecution from JobLauncher into process exit code return value

42/57

(O=success,...)
o From Spring driven application
= Autowire or inject jobLauncher bean into client spring bean

9.2 The interfaces typically used to implement a chunk-oriented Step

9.2.1 Step

* Encapsulates an independent, sequential phase of a batch job

» Contains all of the information necessary to define and control the actual batch
processing

* Can be as simple or complex as the developer desires
* Uses Chunk Oriented processing style
© One itemis read in from an TtemReader
o Optionally handed to an TtemProcessor,
o Aggregated
o Entire chunk is written out via the TtemWriter when number of items read
equals the commit interval
o Transaction is committed

- | ItemReader | | IterP rocessor | | [tamWriter

executa() | :
read() .
itern ' :
process(itam) : ;
i item D I
read() ' H :
itermn . i
S — : process{item)
iem '
' : writa(items) u
ExitStatus , ! [

9.2.2 Configuring a Step
<job id="sampleJob" job-repository="jobRepository">
<step id="step?">
<tasklet transaction-manager="transactionManager">
<chunk reader="itemReader" writer="itemWriter" commit-
interval="70" />
</tasklet>
</step>
</job>
° Namespace parameters
o Required
" reader
" writer
" transaction-manager (defaults to transactionManager)
= job-repository (defaults to jobRepository)
"B commit-interval

o Optional

43/57

= start-limit (on tasklet tag) — how many times can be Step executed
B allow-start—-if-complete
* Allow re-run previously completed step when job is restarting

e Defaultis false
<step 1id="gamelLoad" next="playerSummarization">
<tasklet allow-start-if-complete="true">
<chunk reader="gameFilelItemReader" writer="gameWriter"
commit-interval="70" />
</tasklet>
</step>
<step id="playerSummarization">
<tasklet start-limit="3">
<chunk reader="playerSummarizationSource" writer="summaryWriter"
commit-interval="70" />
</tasklet>
</step>

= skip-limit (on chunk element) — skip the chunk for particular exceptions
(specified by skippable-exception-classes (chunk sub-element))
* In many scenarions processing shouldn't be terminated by error
* It may be suitable to skip certain amount of errornous data
* exceptions thrown from the TtemReader will not cause a rollback in this

scenario
<step id="step?">
<tasklet>
<chunk reader="flatFileltemReader" writer="itemWriter"
commit-interval="70" skip-limit="70">
<skippable-exception-classes>
<include class="java.lang.Exception" />
<exclude class="java.io.FileNotFoundException" />
</skippable-exception-classes>
</chunk>
</tasklet>
</step>

B retry-limit
* retry the chunk for particular exceptions
» useful when error is transient and retry might succeed

* supports also exclude
<step id="step?">
<tasklet>
<chunk reader="itemReader" writer="itemWriter" commit-interval="2"
retry-limit="3">
<retryable-exception-classes>
<include class="org.springframework.
dao.DeadlocklLoserDataAccessException"”/>
</retryable-exception-classes>
</chunk>
</tasklet>
</step>
= no-rollback-exception-classes (tasklet sub-element) - exceptions
thrown from the TtemWriter do not cause a rollback
" jis-reader-transactional-queue — if there is needed rollback/commit
for input queue (e.g. JMS input queue) — default is false

" transaction-attributes (tasklet sub-element)
<transaction-attributes isolation="DEFAULT" propagation="REQUIRED"
timeout="30"/>

44/57

= processor-transactional (on chunk element) — turns transactions on
for ITtemProcessor

= streams (chunk sub-element) - for opening, closing resources, updating
state into ExecutionContext instance

9.2.3 Inheritance + abstract Step

» default behaviour is overidding parent tags
* can merge lists

» parent step can be defined as abstract
<step id="listenersParentStep" abstract="true">
<listeners>
<listener ref="listenerOne" />
<listeners>
</step>
<step id="concreteStep3" parent="listenersParentStep">
<tasklet>
<chunk reader="itemReader" writer="itemWriter" commit-interval="5"/>
</tasklet>
<listeners merge="true">
<listener ref="listenerTwo" />
<listeners>
</step>

9.2.4 Intercepting Step execution

* Each interceptor type can be configured via 1iteners / 1istener parameter of
Step (see above)
» Can register callbacks for monitoring, logging, error or state handling

* StepExecutionListener
public interface StepExecutionlListener extends SteplListener {
void beforeStep(StepExecution stepExecution);
ExitStatus afterStep(StepExecution stepExecution);

© @BeforeStep
© (@AfterStep

¢ ChunkListener
public interface ChunkListener extends SteplListener {
void beforeChunk();
void afterChunk();

© @BeforeChunk
© @AfterChunk

* TtemReadListener
public interface ItemReadlListener<T> extends SteplListener {
void beforeRead();
void afterRead(T item);
void onReadError(Exception ex);

0 @BeforeRead
0 @AfterRead
© @OnReadError

* TtemProcesslListener
public interface ItemProcessListener<T, S> extends SteplListener {
void beforeProcess(T item);

45/57

void afterProcess(T item, S result);
void onProcessError(T item, Exception e);

0 @BeforeProcess
0 QAfterProcess
© @OnProcessError

e TtemWriteListener
public interface ItemWriteListener<S> extends SteplListener {
void beforeWrite(List<? extends S> items);
void afterWrite(List<? extends S> items);
void onWriteError(Exception exception, List<? extends S> items);

© (@BeforeWrite
© Q@AfterWrite
© @OnWriteError
e SkipListener
o can intercept skipping single item on error

o called right before commiting the transaction after chunk processing
public interface SkiplListener<T,S> extends SteplListener {

void onSkipInRead(Throwable t);

void onSkipInWrite(S item, Throwable t);

void onSkipInProcess(T item, Throwable t);

o To cooperate properly with transactions
= appropriate skip method (depending on when the error happened) will only
be called once per item
= will always be called just before the transaction is committed to ensure
that any transactional resources call by the listener are not rolled back by a
failure within the TtemWriter
© @OnSkipInRead
© @OnSkipInWrite
© @OnSkipInProcess

9.2.5 TaskletStep

+ alternative to Chunk-oriented processing
* one atomic execution scenario
* Tasklet.execute () will be called releatedlly by TeskletStep until it either
returns RepeatStatus.FINISHED or throws an exception to signal a failure
<step id="step?">
<tasklet ref="myTasklet"/>
</step>

9.2.6 Controlling step flow

* Control how the job 'flows' from one step to another

* Failure of a step doesn't necessarily mean that the Job should fail

* May be more than one type of 'success' which determines which Step should be
executed next

* Depending upon how a group of Steps is configured, certain steps may not even be
processed at all

* Sequential flow
<job id="job">

46/57

<step id="stepA" parent="s71" next="stepB" />
<step id="stepB" parent="s2" next="stepC" />
<step 1id="stepC" parent="s3" />
</job>
» Conditional flow
<job id="job">
<step id="stepA" parent="s7">
<next on="#*" to="stepB" />
<next on="FAILED" to="stepC" />
</step>
<step id="stepB" parent="s2" next="stepC" />
<step id="stepC" parent="s3" />
</job>

» Configuring for Stop
o 'End' Element

= instructs a Job to stop with a BatchStatus of COMPLETED

<step id="step?" parent="s71" next="step2">
<step id="step2" parent="s2">

<end on="FAILED" />

<next on="#*" to="step3" />
</step>
<step id="step3" parent="s3">

o 'Fail' Element

= jnstructs a Job to stop with a BatchStatus of FAILED
<step 1id="stepl" parent="s7" next="step2">
<step id="step2" parent="s2">
<fail on="FAILED" exit-code="EARLY TERMINATION" />
<next on="#*" to="step3" />
</step>
<step 1d="step3" parent="s3">
o 'Stop' Element

= instructs a Job to stop with a BatchStatus of STOPPED
<step id="step?" parent="s7">
<stop on="COMPLETED" restart="step2"/>
</step>
<step id="step2" parent="s2"/>

* Programmatic flow control
o implementing interface JobExecutionDecider

o and use it in Job configuration:
<job id="job">
<step id="step?" parent="s71" next="decision" />
<decision id="decision" decider="decider">
<next on="FAILED" to="step2" />
<next on="COMPLETED" to="step3" />
</decision>
<step 1id="step2" parent="s2" next="step3" />
<step 1id="step3" parent="s3" />
</job>

9.2.7 ItemReader

* abstraction that represents the retrieval of input fora Step
* oneitem at a time
* null return value indicates that no more items are left

* expected that item will be mapped into domain object (generic type T below)
public interface ItemReader<T> {

47/57

T read() throws Exception, UnexpectedInputException, ParseException,
NonTransientResourceException;

9.2.8 ItemProcessor

» optional part of the step

» abstraction that represents the business processing of an item
* oneitem at a time

* jtis expected to transform one object to another (interface with two generic types)

* returning null indicates that the item should not be written out
public interface ItemProcessor<I, 0> {
0 process(I item) throws Exception;
}

9.2.9 TtemWriter

» abstraction that represents the output of a Step
* one batch or chunk of items at a time (list of items)

* has no knowledge of the input it will receive next
public interface ItemWriter<T> {
void write(List<? extends T> items) throws Exception;
}

9.2.10 Stateful item processing

* ExecutionContext — represents a collection of key/value pairs that are persisted
and controlled by the framework in order to allow developers a place to store
persistent state that is scoped to a StepExecution or JobExecution

executionContext.putLong(getKey(LINES_READ_COUNT), reader.getPosition());
ExecutionContext ecStep = stepExecution.getExecutionContext();
ExecutionContext ecJob = jobExecution.getExecutionContext();
» State can be passed between steps when ItemReader/Itemiiriter
1. Implements StepExecutionlListener (more info in section “Intercepting
Step execution”)
= Can use ExecutionContext instance store/get state in reader/writer
2. Uses @BeforeStep and @AfterStep
= Same as above
3. Implements ItemStream
= Lifecycle
* open —invoked before read
* update —invoked right before commit of each chunk

* close —invoked at the end of the step
public interface ItemStream {
void open(ExecutionContext executionContext) throws ItemStreamException;
void update(ExecutionContext executionContext) throws
ItemStreamException;

void close() throws ItemStreamException;

}
¢ Care must be taken in multithreaded scenarios

9.2.11 ExecutionContextPromotionListener

* Used for passing data to future Steps

48/57

* Data are "promoted" to the Job's ExecutionContext after the step has finished

» Listener must be configured with the keys related to the data in the
ExecutionContext that must be promoted

» Optionally can be configured with a list of exit code patterns for which the promotion

should occur ("COMPLETED" is the default)
public class SavingltemWriter implements ItemWriter<Object> {
private StepExecution stepExecution;

public void write(List<? extends Object> items) throws Exception {
//

ExecutionContext stepContext = this.stepExecution
.getExecutionContext();
stepContext.put("someKey", someObject);

}

@BeforeStep
public void saveStepExecution(StepExecution stepExecution) {
this.stepExecution = stepExecution;
}
}

<job id="job1">
<step id="step?">
<tasklet>
<chunk reader="reader" writer="savingWriter"
commit-interval="70" />
</tasklet>
<listeners>
<listener ref="promotionListener" />
</listeners>
</step>
<step id="step2">

</step>
</job>

public class RetrievingltemWriter implements ItemWriter<Object> {
private Object someObject;

public void write(List<? extends Object> items) throws Exception {
//
}

@BeforeStep

public void retrievelnterstepData(StepExecution stepExecution) {
JobExecution jobExecution = stepExecution.getJobExecution();
ExecutionContext jobContext = jobExecution.getExecutionContext();
this.someObject = jobContext.get("someKey");

I3
9.2.12 Late binding of Job and Step attributes

* ltis possible to parameterize some attribute in the JobParameters with late
binding
<bean id="flatFileItemReader" scope="step"
class="org.springframework.batch.item.file.FlatFileItemReader ">

49/57

<property name="resource" value="#{jobParameters[' 'input.file.name']J}"
/>
</bean>
* Both the JobExecution and StepExecution level ExecutionContext can be

accessed in the same way
<property name="resource" value="#{jobExecutionContext['input.file.name']J}" />
<property name="resource" value="#{stepExecutionContext[' 'input.file.name'J}" />
* Step scope
o Required in order to use late binding since the bean cannot actually be
instantiated until the step starts, which allows the attributes to be found

9.2.13 Implementations of ItemReader and ItemWriter
Spring Batch provides various implementations of ItemReader and ItemWriter for
* Flatfiles
- JDBC
* Hibernate
« JMS
« XML

9.3 How and where state can be stored

~ Persistence mechanism for storing batch meta-data

~ Provides CRUD operations of the various persisted domain objects within Spring Batch,
such as JobExecution and StepExecution

~ Required by many of the major framework features, such as the JobLauncher, Job,

and Step

~ Values in following example are defaults (no need to specify them)

<job-repository id="jobRepository"
data-source="dataSource"
transaction-manager="transactionManager"
isolation-level-for-create="SERIALIZABLE"
table-prefix="BATCH_" max-varchar-length="7000" />

50/57

9.4 What are job parameters and how are they used

/ The EndOfDay Job
_ schedule.date = 2007/05/05
\ /

Joblnstance

\ \ The EndOfDay Job
*

for 2007/05/05

The first attempt at
JobExecution — EndOfDay Job
for 2007/05/05

~ Set of parameters used to start a batch job

~ They can be used for identification or even as reference data of JobInstance during
the run

~ Framework allows the submission of a Job with parameters that do not contribute to the
identity of a JobInstance as well

~ Given a JobParameters object, it will return the 'next' JobParameters object by
incrementing any necessary values it may contain

9.5 What is a FieldSetMapper and what is it used for

~ Spring Batch contains implementations of readers/writers from/to files
~ File reading is stateful, because ItemReader needs to know next line to read
~ Anyone reading flat file must understand ahead of time exactly how the file is structured
~ Two types of files
* Delimited
* Fixed length

9.5.1 FieldSet interface

* Abstraction for enabling the binding of fields from a file resource
* Conceptually very similar to a JDBC ResultSet
* Immutable
* Enables consistent behaviour
o when handling errors caused by a format exception
o when doing simple data conversions
String[] tokens = new String[]{"foo", "1", "true"};
FieldSet fs = new DefaultFieldSet(tokens);
String name = fs.readString(0);
int value = fs.readInt(1);
boolean booleanValue = fs.readBoolean(2);
~ Three basic steps are required when reading a file
1. Read one line from the file
2. Pass the string line into the LineTokenizer#tokenize () method, in order to
retrieve a FieldSet (See LineTokenizer section below)
3. Pass the Fieldset returned from tokenizing to a FieldSetMapper, returning the
result from the TtemReader#read () method (see FieldSetMapper section
below)

51/57

9.5.2 FlatFileItemReader

e Out of the box implementation of ITtemReader
* Provides basic functionality for reading and parsing flat files
* Two important dependencies

© Resource

= Represents a Spring Core Resource
Resource resource = new FileSystemResource("resources/trades.csv");

© LineMapper
= Basic contract is that, given the current line and the line number with which it

is associated, the mapper should return a resulting domain object
public interface LineMapper<T> {

T mapLine(String line, int lineNumber) throws Exception;
}

9.5.3 LineTokenizer

* Abstraction for turning a line into a Fieldset

* Contract of a LineTokenizer is such that, given a line of input (in theory the

String could encompass more than one line), a FieldsSet representing the line will
be returned

public interface LineTokenizer {
FieldSet tokenize(String line);

b

* |Implementations

o DelmitedLineTokenizer — fields in a record are separated by a delimiter
o FixedLengthTokenizer —fields in a record are each a 'fixed width'
© PatternMatchingCompositeLineTokenizer — delimited against a pattern

9.5.4 FieldSetMapper

* Takes a FieldSet object and maps its contents to an object (e.g. custom DTO, a
domain object, or a simple array)
* Used in conjunction with the LineTokenizer to translate a line of data from a
resource into an object of the desired type
public interface FieldSetMapper<T> {
T mapFieldSet(FieldSet fieldSet) throws BindException;
}

* Out of the box implementations

© PassthroughFieldSetMapper
= returns unchanged FieldSet instance
= no domain model (direct copy) scenario

© BeanWrapperFieldSetMapper
= FieldSetMapper that automatically maps fields by matching a field name

with a setter on the object using the JavaBean specification

= field names are used convert into prototype object

= TypeConverter is used for binding
<bean 1id="fieldSetMapper"
class="org.springframework.batch.item.file.mapping.BeanWrapperFieldSetMapper ">
<property name="prototypeBeanName" value="player" />
</bean>

<bean id="player" class="org.springframework.batch.sample.domain.Player"
scope="prototype" />

52/57

9.5.5 DefaultLineMapper

Default iplementation of 2nd and 3rd step of reading files
Most users will use it

public class DefaultLineMapper<T> implements LineMapper<T>, InitializingBean{

}

private LineTokenizer tokenizer;
private FieldSetMapper<T> fieldSetMapper;

public T mapLine(String line, int lineNumber) throws Exception {
return fieldSetMapper.mapFieldSet(tokenizer.tokenize(line));

}

public void setLineTokenizer(LineTokenizer tokenizer) {
this.tokenizer = tokenizer;

}

public void setFieldSetMapper(FieldSetMapper<T> fieldSetMapper) {
this.fieldSetMapper = fieldSetMapper;

}

9.5.6 Mapping Fields by Name

tokenizer.setNames(new String[] {"ID", "birthYear"}

bﬁblic class PlayerMapper implements FieldSetMapper<Player> {

}
9.5.7

public Player mapFieldSet(FieldSet fs) {
if (fs == null) {
return null;

}

Player player = new Player();
player.setID(fs.readString("ID"));
player.setBirthYear(fs.readInt("birthYear"));

Multiple Record Types within a Single File
File

USER;Smith;Peter;;T;20014539;F
LINEA;1044391041ABC037.49G201XX1383.12H
LINEB;2134776319DEF422.99M005LI

<bean

Parsing configuration
id="orderFilelLineMapper"
class="org.spr...PatternMatchingCompositel ineMapper ">
<property name="tokenizers'">
<map>
<entry key="USER*" value-ref="userTokenizer" />
<entry key="LINEA*" value-ref="lineATokenizer" />
<entry key="LINEB*" value-ref="l1ineBTokenizer" />
</map>
</property>
<property name="fieldSetMappers">
<map>
<entry key="USER*" value-ref="userFieldSetMapper" />
<entry key="LINE*" value-ref="lineFieldSetMapper" />
</map>
</property>

</bean>

53/57

9.6 Additional topics

9.6.1

DB ItemReaders

~ Cursor Based ItemReaders

<bean

RowMapper callback with JdbcTemplate are loading all data during the DB query
o Not efficient
Generally the default approach of most batch developers
Java ResultSet class is essentially an object orientated mechanism for
manipulating a cursor
ResultSet maintains a cursor to the current row of data
Calling next on a ResultSet moves this cursor to the next row
Close method will then be called to ensure all resources are freed up
Various implementations possible
0 JdbcCursorItemReader
= works directly with a ResultsSet
= Requires a SQL statement to run against a connection obtained from a
DataSource

= Similar usage to JdbcTemplate

id="itemReader" class="org.spr...JdbcCursorItemReader">
<property name="dataSource" ref="dataSource" />
<property name="sql" value="select ID, NAME, CREDIT from CUSTOMER" />
<property name="rowMapper ">

<bean
class="org.springframework.batch.sample.domain. CustomerCreditRowMapper" />
</property>

</bean>

© HibernateCursorItemReader
© StoredProcedureltemReader

~ Paging TtemReaders

<bean

Executing multiple queries where each query is bringing back a page of the results
Each query that is executed must specify the starting row number and the number
of rows that we want returned for the page
Implementations
© JdbcPagingItemReader
= Each database has its own strategy for providing paging support
= We need to use a different PagingQueryProvider for each supported
database type
= There is also the SglPagingQueryProviderFactoryBean that will auto-
detect the database — recommended best practise
= Requires that you specify a select clause and a from clause.
= You can also provide an optional where clause
= These clauses will be used to build an SQL statement combined with the
required sortKey (required to be unique)
= |t will pass back one item per call to read in the same basic fashion as any
other TtemReader

= The paging happens behind the scenes when additional rows are needed
id="itemReader" class="org.spr...JdbcPagingltemReader ">
<property name="dataSource" ref="dataSource" />
<property name="queryProvider">
<bean class="org.spr...5qlPagingQueryProviderFactoryBean">

54/57

<property name="selectClause" value="select id,name,credit"/>
<property name="fromClause" value="from customer" />
<property name="whereClause" value="where status=:status" />
<property name="sortKey" value="id" />
</bean>
</property>
<property name="parameterValues">
<map>
<entry key="status" value="NEW" />
</map>
</property>
<property name="pageSize" value="71000" />
<property name="rowMapper" ref="customerMapper" />
</bean>

© JpaPagingltemReader
© TIbatisPagingItemReader

9.6.2 Repeat

~ Repetitive actions are common batch processing concern
public interface RepeatOperations {

RepeatStatus iterate(RepeatCallback callback) throws RepeatException;
}

~ Callback can contain bussiness logic that will be repeated
public interface RepeatCallback {

RepeatStatus doInIteration(RepeatContext context) throws Exception;
¥

~ Return value

* Based on this value is decided if iteration should end

* RepeatStatus.CONTINUABLE — iteration should continue

* RepeatStatus.FINISHED — iteration should finish
~ Simplest implementation of RepeatOperations is RepeatTemplate
~ Spring Batch can iterate over the input

* RepeatTemplate with RepeatCallback are used

* Chunked step uses RepeatCallback implementation to call
ItemReader.read()

* So user doesn't have to interact with Repeat Template directly
* lteration ends when ItemReader.read () returns null

9.6.3 Scaling and parallel processing

~ First check if simplest implementation meets your needs first
~ Use concurrent processing only if necessary
~ Two modes of parallel processing
» Single process, multi-threaded
o Multi-threaded Sstep
o Parallel steps
o Partitioning a Step
e Multi-process
o Remote Chunking of Step
o Partitioning a Step
~ Multi-threaded Step
* Add a TaskExecutor to your Step configuration

55/57

* Step parts has to be stateless or thread-safe
* Alot of out of the box implementations of TtemReaders/TtemWriters aren't

thread-safe

* There is a throttle limit in the tasklet configuration which defaults to 4
* May need to increase this to ensure that a thread pool is fully utilised

<step id="loading">

<tasklet task-executor="taskExecutor" throttle-limit="20">...</tasklet>

</step>
~ Parallel steps
<job id="job1">

<split id="split1" task-executor="taskExecutor" next="step4">

<flow>
<step id="step1"
<step id="step2"

parent="s7" next="step2" />

parent="s2" />

</flow>
<flow>
<step id="step3" parent="s3" />
</flow>
</split>
<step id="step4" parent="s4" />
</job>
~ Remote Chunking of Step
Master: Slave:
<<Stepr> <<Listener>>
. 5
sl | o |=
° = e
o |8 ol |=
mk&) aleingt=
gl | = |5
o |S 5 &
= = c
& 3
+ —
I

» Step processing is split across multiple processes

* Communicating with each other through some middleware

* Master component is a single process
» Slaves are multiple remote processes
* Works best if the Master is not a bottleneck — processing must be more expensive

than the reading of items

» Spring Batch has a sister project Spring Batch Admin, which provides(amongst
other things) implementations of various patterns like this one using Spring
Integration. These are implemented in a module called Spring Batch Integration

~ Partitioning a Step

56/57

» Slaves can be
o remote services (Multi-process scenario)
o local threads of execution (Single process, multi-threaded scenario)
e EachpatritionStep
© hasit's own ExecutionContext instance
o will run only once
» SPI (Service provider interface — API intended to be implemented or extended by a
third party) in Spring Batch consists of
o Special implementation of Step (PartitionStep)
o Two strategy interfaces that need to be implemented for the specific
environment
" PartitionHandler
m StepExecutionSplitter

Panﬂonswp Step
. | PartitionHandler | |
execute() | : ‘St = HonSolitt ‘ l
* I
hendlel) | epExecutionSplitter :
n split]) | !
|
" | executef) |
E } repeat
U .
join !
=
l
..........._...................]
i
I
i

E aggrega%

<step id="stepl.master">
<partition step="step?" partitioner="partitioner">
<handler grid-size="70" task-executor="taskExecutor" />
</partition>
</step>
o Spring Batch creates step executions for the partitions called "step1:partition0",
etc.

© Partitioner — generates execution contexts as input parameters for new

step executions only (no need to worry about restarts)
public interface Partitioner {
Map<String, ExecutionContext> partition(int gridSize);

}

57/57

	1 Tasks and Scheduling
	1.1 Spring framework provides
	1.2 TaskExecutor abstraction
	1.3 TaskScheduler abstraction
	1.4 Trigger interface
	1.5 Annotation Support
	1.6 Task Namespace
	1.7 Application Servers

	2 Spring Remoting
	2.1 The concepts involved with Spring Remoting on both server- and client-side
	2.2 The benefits of Spring Remoting over traditional remoting technologies
	2.3 The remoting protocols supported by Spring
	2.4 How Spring Remoting-based RMI is less invasive than plain RMI
	2.5 How client and server interact with each other

	3 Spring Web Services
	3.1 How do Web Services compare to Remoting and Messaging
	3.2 The approach to building web services that Spring-WS supports
	3.3 The Object-to-XML frameworks supported by Spring-OXM
	3.4 The strategies supported to map requests to endpoints
	3.5 Of these strategies, how does @PayloadRoot work exactly?
	3.6 The functionality offered by the WebServiceTemplate
	3.7 The underlying WS-Security implementations supported by Spring-WS
	3.8 How key stores are supported by Spring-WS for use with WS-Security
	3.9 Additional chapters
	3.9.1 Best practises for Spring Web Services
	3.9.2 Error Handling
	3.9.3 WS testing
	3.9.4 Interceptors

	4 RESTful services with Spring-MVC
	4.1 The main REST principles
	4.2 Spring MVC is an alternative to JAX-RS, not an implementation
	4.3 The @RequestMapping annotation, including URI template support
	4.4 The @RequestBody and @ResponseBody annotations
	4.5 The functionality offered by the RestTemplate

	5 Spring JMS
	5.1 Where can Spring-JMS applications obtain their JMS resources from
	5.2 The functionality offered by the JmsTemplate
	5.3 The functionality offered by Spring's JMS message listener container, including the use of a MessageListenerAdapter through the 'method' attribute in the <jms:listener/> element

	6 Local JMS Transactions with Spring
	6.1 How to enable local JMS transactions with Spring's message listener container
	6.2 If and if so, how is a local JMS transaction made available to the JmsTemplate
	6.3 How does Spring attempt to synchronize a local JMS transaction and a local database transaction
	6.4 The functionality offered by the JmsTransactionManager

	7 JTA and Two-phased commit transactions with Spring
	7.1 What guarantees does JTA provide that local transactions do not provide
	7.2 How to switch from local to global JTA transactions
	7.3 Where can you obtain a JTA transaction manager from
	7.4 Additional topics
	7.4.1 Declarative transaction demarcation

	8 Spring Integration
	8.1 Main concepts (Messages, Channels, Endpoint types)
	8.1.1 Message
	8.1.2 MessageEndpoint
	8.1.2.1 Channel Adapter
	8.1.2.2 Messaging Gateway
	8.1.2.3 Service Activator
	8.1.2.4 Message Transformer
	8.1.2.5 Filter
	8.1.2.6 Router
	8.1.2.7 Splitter
	8.1.2.8 Aggregator

	8.1.3 Error Handling
	8.1.4 SpEL Expressions

	8.2 How to programmatically create new Messages
	8.3 Using chains and bridges
	8.4 The different Channel types and how each of them should be used
	8.4.1 ChannelInterceptor
	8.4.2 Special Channels
	8.4.3 Temporary reply channels
	8.4.4 Point-to-Point Dispatcher

	8.5 The corresponding effects on things like transactions and security
	8.6 The need for active polling and how to configure that

	9 Spring Batch
	9.1 Main concepts (Job, Step, Job Instance, Job Execution, Step Execution, etc.)
	9.1.1 Job
	9.1.2 JobInstance
	9.1.3 JobLauncher

	9.2 The interfaces typically used to implement a chunk-oriented Step
	9.2.1 Step
	9.2.2 Configuring a Step
	9.2.3 Inheritance + abstract Step
	9.2.4 Intercepting Step execution
	9.2.5 TaskletStep
	9.2.6 Controlling Step flow
	9.2.7 ItemReader
	9.2.8 ItemProcessor
	9.2.9 ItemWriter
	9.2.10 Stateful item processing
	9.2.11 ExecutionContextPromotionListener
	9.2.12 Late binding of Job and Step attributes
	9.2.13 Implementations of ItemReader and ItemWriter

	9.3 How and where state can be stored
	9.4 What are job parameters and how are they used
	9.5 What is a FieldSetMapper and what is it used for
	9.5.1 FieldSet interface
	9.5.2 FlatFileItemReader
	9.5.3 LineTokenizer
	9.5.4 FieldSetMapper
	9.5.5 DefaultLineMapper
	9.5.6 Mapping Fields by Name
	9.5.7 Multiple Record Types within a Single File

	9.6 Additional topics
	9.6.1 DB ItemReaders
	9.6.2 Repeat
	9.6.3 Scaling and parallel processing

